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7Preface to the printed editionThis volume contains records of the mathematical activities and some of the other activitieswhich took place during the seventh general meeting of European Women in Mathematics atUniversidad Complutense de Madrid, September 4 { 9, 1995.The meeting was attended by 46 participants from 14 countries (Denmark, England,Finland,France, Germany, Italy, Norway, Portugal, Rumania, Russia, Spain, Sweden and Switzer-land).The main organizers were by far Capi Corrales Rodrig�a~nez and Raquel Mallavibarrenafrom Madrid. They were assisted by an organizing committee consisting of Bodil Branner(Denmark), Isabel Labouriau (Portugal), Rosa Maria Mir�o{Roig (Spain), Marjatta N�a�at�anen(Finland), Sylvie Paycha (France), Caroline Series (England), Laura Tedeschini{Lalli (Italy).In organizing the meeting we build on earlier experiences. In particular the work done byEva Bayer, Mich�ele Audin and Catherine Goldstein (all from France) around the �fth EWMmeeting in Luminy in December 1991 has been a constant source of inspiration.We are very grateful for the �nancial support we received from the spanish Instituto de laMujer and the Ministerio de Educaci�on y Ciencia, both for the Madrid meeting and for thepublication of these Proceedings.The logo of the EWM meeting and the t-shirt pattern (shown on the front page) wasdesigned by DODOT.These Proceedings were edited by Bodil Branner and N�uria Fagella. We thank ChristianMannes for setting up the TeX style we have used.The photos were taken by Marketa Novak.We wish to express our thanks to all participants for making the Madrid meeting a successand to all who contributed in writing to this volume. Especially we thank Capi and Raquelfor making it all possible. February, 1996Bodil Branner and N�uria Fagella.Addendum to the electronic editionThe original version of these proceedings was printed at the Universitat de Barcelona,with Dep. Legal L 544 - 1996, Impreso Poblagra�c S.L. Av. Estacion s/n Pobla de Segur.The main di�erence between the electronic edition and the printed one is that some mis-prints have been corrected and that the logo designed by DODOT, the photos and the �gurescontained in the mathematical papers do not appear here.If you wish to get a copy of the printed version, please contact your regional coordinatorand ask if some are still available.
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9European Women in MathematicsEWM is an a�liation of women bound by a common interest in the position of women inmathematics. Our purposes are:{ To encourage women to take up and continue their studies in mathematics.{ To support women with or desiring careers in research in mathematics or mathematicsrelated �elds.{ To provide a meeting place for these women.{ To foster international scienti�c communication among women and men in the mathemat-ical community.{ To cooperate with groups and organizations, in Europe and elsewhere, with similar goals.Our organization was conceived at the International Congress of Mathematicians in Berke-ley, August 1986, as a result of a panel discussion organized by the Association for Women inMathematics, in which several European women mathematicians took part. There have sincebeen six European meetings: in Paris (1986), in Copenhagen (1987), in Warwick (England)(1988), in Lisbon (1990), in Marseilles (1991), in Warsaw (1993), and in Madrid (1995). Thenext meeting will be in 1997. The place of the meeting will be announced later.At the time of writing, there are participating members in the following countries:Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Italy,Latvia, Lithuania, the Netherlands, Norway, Poland, Portugal, Romania, Russia, Spain,Sweden, Switzerland, Turkey, Ukraine, and the United Kingdom; contacts in Albania aswell as with several non-European countries. Activities and publicity within each countryare organized by regional co-ordinators. Each country or region is free to form its ownregional or national organization, taking whatever organizational or legal form is appropriateto the local circumstances. Such an organization, Femmes et Mathematiques, already existsin France. Other members are encouraged to consider the possibility of forming such local,regional or national groups themselves. There is also an e-mail network.For further information contact:The secretary of EWM: Riitta Ulmanen,Department of Mathematics,P.O.Box 4 (Yliopistonkatu 5),FIN - 00014, University of Helsinki, Finland;e-mail: ulmanen@sophie.helsinki.�,Tel 358 9 191 22853, Fax 358 9 191 23213For details of the e-mail network contact:sarah.rees@newcastle.ac.uk September, 1995
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11EWM on the WebEWM now has a page on the Web. There are two adresses, although both contain thesame information. One in Helsinkihttp://www.math.helsinki.�/EWMand one in Austriahttp://www.risc.uni-linz.ac.at/misc-info/ewm/EWM.htmlThe Web account has been set up by Olga Caprotti, Giovanna Roda, Ileana Tomuta andDaniela Vasaru at RISC { LinzResearch Institute for Symbolic ComputationJohannes Kepler UniversityA { 4040 Linz, AustriaThey can be reached at the EWM { Web accountewm@risc.uni-linz.ac.ator at their personal accountsFirstName.LastName@risc.uni-linz.ac.at





History Since Luminy
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15EWM since its �fth meeting in LuminyCaroline SeriesUniversity of Warwick, EnglandThe �fth EWM meeting was held in Luminy, France, December 9-13th, 1991. In thelengthy report which was published of the Luminy meeting, I wrote a brief history of the �rst�ve years of EWM. Since this is the �rst major EWM report to be published since that time,I have been asked to write a few words to record what has happened in the interim.1. The Sixth General Meeting, Warsaw, June 7th-11th 1993The sixth General EWM Meeting took place at the Technical University in Warsaw fromJune 7th-11th 1993. The main organiser was Anna Romanowska. The meeting was attendedby about 60 participants from 16 European countries. The conference featured lectures inpure and applied mathematics, an interesting session on creativity, and several business ses-sions. There was a report from the Round Table on women in Mathematics at the EuropeanCongress in 1992. We learned that the proportion of women among doctorates in mathe-matics is highest in eastern European and Mediterranean countries (Greece, Italy, and Spainwere represented at the conference), and lowest in Scandinavia, the Netherlands, the UK, andGermany. There has been much speculation about this somewhat counter-intuitive situation,but it seems more productive to concentrate on how to get more women into mathematicsin the northern countries. Mary Gray gave a talk on the history, aims and activities of theAWM, and also gave helpful advice about the draft statutes of EWM.2. Legalisation of EWM and establishment of the HelsinkiO�ce, 1991-1994One of our early failures as an organisation, which I mentioned in the report of the Luminymeeting, was our loose structure in which everything depended on just one person, the inter-national coordinator. By the time of the Luminy meeting we had decided that it was timeto set in place some more formal organisation, and that we wanted EWM to be a legal body.During the Luminy meeting we did a lot of work drafting our basic organisational structureand statutes and a small committee, consisting of Marjatta N�a�at�anen, Riitta Ulmanen andmyself, was formed to carry this work further.In the course of discussing our statutes we were forced to consider the structure andfunction of EWM in great detail. We wanted to make EWM work by consensus, but atthe same time we had learned from experience that it is vital to have a core of centralpeople responsible for the continuity and smooth functioning of the organisation. This weachieved by setting up a standing committee, led by a convenor, to deal with executive mattersand in particular in planning the next meeting; regional coordinators to deal with membersand circulate information in their regions; and international coordinators to watch over andcirculate information among the regions. We also established membership procedures and amethod of collecting dues. None of this is easy in an international organisation with membersliving in many di�erent circumstances.At the Warsaw meeting, the General Assembly accepted, with some changes, the statute



16prepared by our committee in consultation with Finnish lawyers. It was here that the �nedetails of the structure of membership and fees were hammered out. It was decided to for-malise membership and start collecting dues from 1994 to pay for the work in Helsinki and ourinternational activities. There are three rates to allow for the many di�erent circumstancesin which we live. The regional co-ordinators are responsible for collecting this money in localcurrency and sending it to the general EWM bank account which is held in Helsinki.The establishment of EWM as a legal body was �nalised on December 2nd 1993. Thiswas surely an important marker in the history of EWM.One reason for the choice of Helsinki as the legal seat of EWM was that Helsinki wasalready the seat of the European Mathematical Society (EMS). We were very fortunate thatRiitta Ulmanen agreed to be our general secretary. Riitta is librarian in the MathematicsDepartment in the University of Helsinki. We made an application form for EWM mem-bership which regional co-ordinators circulate and collect yearly. The o�ce in Helsinki is aninformation centre and it collects and keeps constantly updated information about members,�nances, committees and coordinators. Riitta also answers enquiries about EWM and mailsinformation to members, usually via the regional coordinators . For a scattered organisationlike ours it is crucial to have a central place where everything is kept together. For the lasttwo years, Marjatta has obtained funding from the Finnish Ministry of Education and theFinish Cultural Fundation to support Riitta's work.The address and telphone numbers of the EWM Helsinki o�ce have changed recently andthe new address is : EWM O�ce, Riitta Ulmanen , SecretaryDepartment of Mathematics, PO Box 4Yliopistonkatu 5, FIN-00014University of Helsinki, FinlandTel 358 0 191 22853 { Fax 358 0 191 23213e-mail: ulmanen@sophie.helsinki.�3. The European Mathematical Society Committee on Womenand MathematicsThe European Mathematical Society (EMS) was founded in October 1990. Eva Bayer was in-strumental in setting up and chairing the EMS Committee on Women and Mathematics fromJanuary 1991. Not surprisingly, EWM members, particularly Eva, have played a prominentrôle. The committee organised a round table at the �rst European Congress of Mathematicsin Paris, 1992, which had about 150 participants, 5 short talks, and a lively and interestingdiscussion.The committee made an analysis of the situation of women mathematicians in Germany,which has one of the lowest proportions of women to men among mathematicians in Europe.The results, together with a report based on the discussions of the round table, appear in the1992 Proceedings of the ECM.In spring 1994, the EMS committee made an extensive inquiry in Switzerland about thelow number of women mathematicians in that country. The results were discussed at theInternational Congress of Mathematicians in Z�urich, August 1994. EWM and the EMScommittee also organised a more general discussion about the countries in European countrieswith an unusually low proportion of women mathematicians.



17At the Zurich ICM, there was a very nice \Noether lecture" by the distinguished Russianwoman mathematician O.A. Ladizhenskaya. There was also a panel discussion jointly organ-ised by AWM, the Canadian women mathematician's group, and EWM. Reports of theseevents may be found in our January 1995 Newsletter Number 2.The next EMS meeting is to be held in Budapest in summer 1996. Kari Hag is organisinga round table on the topic \Females in Mathematics in the Iberian and Scandanavian Penin-sulars". A pleasing number of women speakers have been invited, including Dusa McDu�who is to give a plenary session.4. Regional MeetingsWe now have regional coordinators in Belgium, Czech Republic, Denmark, Estonia, Finland,France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Netherlands, Norway, Poland,Portugal, Roumania, Russia, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom.There have been regional meetings of women mathematicians in, among others, France,Germany, Russia, Sweden and the UK. Femmes et math�ematiques continues to be an impor-tant and very active organisation in France. During 1995, femmes et math�ematiques organisedthree general assemblies, two in Paris and one in Lille. On 8th March 1995 -Internationalwomen's day- there were actions in seven universities on the theme Women in mathematics.In 1996, several events are planned including a one day forum for young women mathemati-cians in Paris in January and a general assembly in March in Rennes. The Russian WomenMathematicians Association (RMWA) was founded at a conference in May 1993 in Suzdaland already has more than 300 members from more than 40 cities of Russia and the FSU. Asecond International conference took place in Voronezh in May 1995 and the third is plannedfor Volgograd in May 1996 (see below). An EWM group, AIDIM, associazione italiana donnein matematica, has been formed in Italy which has about 30 o�cial members with moreinterested. This group took part in a congress in Anacapri in 1994 where it presented itspurposes and proposed some topics for discussion. The British group BWM organised a verysuccessful one day meeting in London in September 1995 attended by 50 women from all overthe UK. There is also a functioning inter-uk email network.The German group is also active: there is an e-mail net managed from Magdeburg withabout 150 participants, where there is also an ftp-server with information about EWM. Adata-base of women mathematicians with a Habilitation in Germany since Emmy Noetherhas been set up. There have been some local meetings; in 1994 there was a \Women andMathematics" meeting in Oberwolfach organized by Catherine Bantle (Basel) in which a largeEWM group participated.5. The e-mail networkFor some time we have relied heavily for our communications on the email network set up byLaura Tedeschini{Lalli in Italy. This is a very easy and e�cient method of communicating andsaves much time and expense. In Madrid, Sarah Rees o�ered to reorganise and administerthe network from her university in Newcastle. She has now set up a new network andhopes eventually to have subnets for each individual country or region. To join, mail her atsarah.rees@newcastle.ac.uk



186. The NewsletterWe have been talking for a long time about starting a newsletter, and three issues, roughlyone per year, have now appeared. The newsletter is being edited by Cathy Hobbs and MarlenFritsche. It is distributed via the regional coordinators and in addition is sent by email, inTex and plain versions , to all on our network. You are sent a copy automatically on joiningthe network, otherwise copies hard or electronic can be obtained from the Helsinki o�ce.7. The Seventh General Meeting, Madrid, September 4-9th,1995Since the rest of this report is about the Madrid meeting, I shall not say anything here. Iwould just like to note that we were very pleased that Capi Corrales managed to get fundingfor a planning meeting of the organising committee, including �ve non-Spanish members,who came to Madrid in November 1994. Hosted by Capi in her spacious apartment, thecommittee was able to spend an entire whole weekend, from early till late, discussing andplanning all aspects of the conference. This meant that the wider international committeecould take a really active and informed part in organising the meeting and were much betterable to support the Spanish organisers throughout the process. This kind of support for thelocal organisers is invaluable and ideally we should try to have such a pre-meeting beforeevery large meeting.8. The futureOne of our main aims should certainly be to continue to develop more regional activities.These are easier and cheaper to organise than big international events, and can be attendedrelatively easily by members who cannot get to the international meetings. They can relateto local needs and are in people's own language. Already a number of activities of this kindare lined up for the coming year. Besides the Budapest meeting mentioned above, EWM isorganising, jointly with femmes et math�ematiques, an interdisciplinary two day workshopon Renormalisation from June 14th-15th 1996 in Paris. There will also be a joint Franco-Russian meeting organised by femmes et math�ematiques and the Russian Association forWomen Mathematicians (RAWM) in Marseille in December 1996. The British group BWMis planning another one day meeting in London next September. The third major meetingof the Russian Association is planned for May 27-31, 1996 in Volgograd. It will part of aninternational forum on \Problems of survival" under the title \Mathematics, modelling andecology". For details contact the organiser Prof. G. Riznichenko, riznich@orgmath.msk.su.The German group is planning a long weekend in June 1996.On the international level, to facilitate the 
ow of information, we are hoping to set upan Internet page.One of our main problems is money, and if we could �nd some funding on a steady basis itwould take a huge burden o� the organisers. Funding meetings is a big problem which ideallyshould be taken care of well in advance. We feel we should be able to get more funding fromthe EC, but it takes hard work and persistence to put in applications. We badly need peopleto help in this work. We also need more people to sign up as members and pay their duesso that we can be more active and have more secure ongoing support for our international



19work.As EWM becomes more established, it is very pleasing to see that many people alreadysee us as an established smoothly running organisation. They expect that EWM will be ableto answer queries, produce statistics, organise conferences, and put in place networks andsupport systems and opportunities for women to meet. Of course we are very glad to be seenin this rôle, and this is indeed exactly what our original vision was about, but keeping it allgoing is still hard work. We badly need more people to come forward to take part in runningthe organisation. There are many jobs, small and large, to be done. Although hard work,this has many rewards as one gets to know and cooperate with women mathematicians fromall over Europe, and perhaps it is really the best way to �nd out what our network is allabout.In short, although there are still many problems and shortcomings in our organisation,we are spreading, I believe that people are beginning to take us for granted, and that meansthat we have arrived to stay!
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21Brief report on the sixth meeting of EWM in WarsawJune 7th-11th, 1993The meeting was attended by about 60 participants from 16 European countries: Den-mark, Finland, France, Germany, Greece, Italy, Lithuania, the Netherlands, Norway, Poland,Portugal, Russia, Spain, Sweden, Turkey, Ukraine. Mary Gray from the USA came as a rep-resentative of the Association for Women in Mathematics, of which she is one of the foundingmembers. The main organiser of the meeting was Anna Romanowska of the Technical Uni-versity, Warsaw.1. Mathematical ProgrammeThere were mathematical talks by{ Danuta Preworska-Rolewicz (Warsaw): \Di�erential calculus as calculus";{ Janina Kotus (Warsaw): \Fractals arising in holomorphic dynamical systems";{ Viviane Baladi (Lyon): \Some recent results on random perturbations of dynamical sys-tems";{ Krystyna Kuperberg (Auburn, Florida): \The recent revival of continuum theory";{ Ina Kersten (Bielefeld): \Linear algebraic groups";{ Zo�a Adamowicz (Warsaw): \On real closed �elds".There was also a poster session in which participants presented aspects of their work.2. General DiscussionsAs decided at the previous EWM meeting, the non-mathematical theme was Creativity,organised by Coby Geijsel. There were two talks:{ Coby Geijsel (Amsterdam): \Images of creativity"{ Karin Kwast (Amsterdam): \Creativity, a case study"These were followed by discussions in small groups. Other activities were a report on theRound Table on \Women in Mathematics" which took place at the European MathematicalCongress in Paris 1992; a talk by Mary Gray on the history, aims and activities of theAWM; and one by Krystyna Kuperberg, a Polish mathematician who has settled in the USA,comparing the academic environment for women mathematicians in Poland, Sweden and theUSA. There was also a discussion on the situation of women mathematicians in the formersocialistic countries. Moreover the programme included a talk by Vassiliki Farmaki (Athens):\Women mathematicians in Ancient Greece", and a talk by Magdalena Jaroszewska (Poznan):\Olga Taudsky-Todd".



223. Organisation of EWM and the General AssemblyFollowing the decision in Luminy to go forward with the establishment of EWM as a legalbody, much work had been done, mainly by Caroline Series and by Marjatta N�a�at�anen andRiitta Ulmanen of Helsinki in consultation with Finnish lawyers, on preparing a draft of thestatutes. This draft was presented to the general assembly and, following detailed discussion,the essentials were accepted with some changes. There will be two categories of membership,supporting members and full members. Supporting members can come to meetings but notvote, and men can only join as supporting members. The suggestion of this formulation wasmade by Mary Gray, who in addition to her long association with AWM is a lawyer as wellas a mathematician. The legalisation committee was asked to prepare a �nal version of thestatutes and the legalisation was completed by December 2nd of 1993. The legal seat of EWMwill be in Helsinki in Finland where Riitta Ulmanen as the secretary will have an o�ce forEWM at the Department of Mathematics at University of Helsinki. There was considerablediscussion on the knotty problem of membership fees and how to collect them. It was decidedto start charging membership fees from 1994 after legalisation is complete with 3 rates (low:1 ECU, standard: 20 ECU, high: 50 ECU) (1 ECU equals approximately 1 US dollar).The regional co-ordinators should be responsible for collecting the money and sending it (orpart of it) to a general account. The general assembly also appointed new co-ordinators,convenors and standing committee, for details see the names and committees list. The newconvenor of the standing committee is Anna Romanowska and the international co-ordinatorsare Capi Corrales (west), Marketa Novak (central), Inna Berezowskaya and Marie Demlova(east). There will be some joint activity of AWM and EWM at the International Congressof Mathematicians in Z�urich, August 1994. This is being organised by Cora Sadosky, thepresident of AWM, and Eva Bayer. Since the Warsaw meeting it has been decided that thenext EWMmeeting will be planned to take place in Madrid in July 1995 with Mariemi Alonso(Madrid), Capi Corrales (Madrid) and Rosa Maria Miro (Barcelona) as the main organisers.It is likely that the 1997 meeting can be in Germany.4. Organising CommitteesThe Warsaw meeting was organised by the EWM standing committee consisting of PolynaAgranovich (Ukraine), Mariemi Alonso (Spain), Eva Bayer (France), Bodil Branner (Den-mark), Jacqueline Detraz (France), Sandra Hayes (Germany), Magdalena Jaroszewska (Poland),Anna Romanowska (Poland), Barbara Roszkowska (Poland), and Caroline Series (England).The local organising committee consisted of Elzbieta Ferenstein, Irmina Herburt, FelicjaOkulicka, Ewa Pawelec, Agata Pilitowska, Anna Romanowska, Barbara Roszkowska, andKrystyna Twardowska. The meeting was �nancially supported by the Technical Univer-sity of Warsaw, in particular the Dean of the Department of Technical Physics and AppliedMathematics, and by the money left after the third EWM Meeting in Warwick.



MADRID 1995
Organization of EWMFollowing the statutes of EWM a general assembly was held during this meeting. Thedecisions taken are valid until the next general assembly which should take place during thenext general meeting of EWM planned for 1997 in ICTP, Trieste.
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25Decisions taken during the general assemblyRiitta Ulmanen (based on notes taken by her and Karin Bauer)1 The General Assembly was chaired by Marketa Novak from Sweden who wished everyonepresent welcome to the General Assembly. The General Assembly was announced inthe EWM Newsletter in February 1995 and earlier in separate announcements of theMadrid meeting. Thus the requirements for the announcement of the General Assemblywere met and the meeting was valid.Riitta Ulmanen presented an agenda which was approved as the working procedure ofthe meeting (Appendix 1)2 Approving new membersBecause this was the �rst meeting since European Women in Mathematics became ano�cial body everybody would be a new member.It was decided to approve everyone who had sent her application either to her regionalcoordinator or to Riitta Ulmanen or who would leave her application form at the GeneralAssembly meeting as a member of the EWM.2 Electing international coordinatorsThe following persons were elected as the international coordinatorsEast: Marie Demlova; Central: Marketa Novak and Inna Berezowskaya;West: Capi Corrales Rodriganez3 Con�rming regional coordinatorsRegional coordinators were con�rmed (see XIII).4 Electing two auditors and a deputySeija Kamari and Kirsi Peltonen were elected as auditors for 1996-97. Marja Kankaan-rinta was elected to be the deputy auditor. They all are from Finland.5 Con�rming the �nancial statement and discharging those responsible of liabilitiesMarjatta N�a�at�anen explained brie
y the �nancial situation of EWM.Riitta Ulmanen read aloud the �nancial statement. It was con�rmed by the GeneralAssembly and those responsible of liabilities were discharged.6 Choosing the place and time for the next meetingThe General Assembly decided to have the next meeting of EWM in 1997. The monthwas not set yet. The Nordic countries would be responsible for organizing the meetingand it was decided that they choose the place and set the time after that. (It has sincebeen decided that the next meeting is to be held at ICTP, Trieste; the time will beanounced later.)Also the possibility of Germany organizing the meeting in 1999 was discussed.



267 Electing the Standing Committee and convenor for 1995-97According to the statutes the Standing Committee consists of 8 - 12 members. Theterm of a member is four years. Half of the terms will expire at the general assemblymeeting and half will continue. After a lively discussion the Standing Committee waselected as follows:From the Standing Committee for 1993-95 were elected- Polyna Agranovich, Ukraine- Bodil Branner, Denmark- Capi Corrales Rodriganez, Spain- Marjatta N�a�at�anen, Finland- Rosa Maria Miro-Roig, Spain- Caroline Series, United KingdomAs new members:- Valentina Barucci, Italy- Marie Demlova, Check Republic- Laura Fainsilber, France- Sylvie Paycha, France- Ragni Piene, NorwayAn election of an additional member was left to the Standing Committee to be madelater. (Emilia Mezzetti, Italy, has since been included.)Sylvie Paycha was elected to be the Convenor and Capi Corrales Rodriganez to be theDeputy Convenor. Marjatta Naatanen was appointed Treasurer.8 Minutes of the previous General AssemblyEWM became an o�cial body in December 1993 and the previous meeting was in June1993 in Warsaw. It was decided to accept the brief report made from the Warsawmeeting as the minutes and to approve it.9 Deciding feesIt was decided to keep the fees as they were: 1 ECU (low), 20 ECU (standard), and 50ECU (high).The question of how to collect the fees and how to send it to EWM was raised. MarjattaN�a�at�anen explained that every regional coordinator collects the fees whichever way ismost convenient for her. She may open an account for that purpose. After makingdeductions necessary for local use she then sends the rest to the EWM account inFinland either in her own currency or in Finnish currency.10 Setting up committees for speci�c issuesThe decisions made appear in the list of committee members at the end of this volume.



THE MATHEMATICAL PARTThe mathematical programme constituted the main part of the EWM meeting and simi-larly the mathematical papers form the main part of these Proceedings.Included is a description of the philosophy behind the organization of the mathematicalpart, edited versions of ten lectures given on the three chosen topics (Holomorphic Dynamics,Algebraic Geometry and Mathematical Physics) and of four contributions which formed thebasis of an interdisciplinary discussion (on Moduli Spaces), abstracts of three shorter talksand at the end an evaluation of the mathematical aspects of the programme.





29The Mathematical part of EWM MeetingsCapi Corrales and Laura Tedeschini LalliThe organization of the scienti�c part of an EWM meeting is quite di�erent from that ofmost mathematical meetings. Starting at the EWM meeting in Luminy in 1991 we decidedto experiment with the format trying to reach the following main goals: to learn mathematicswhich is new to us; to learn how to transmit mathematics; to learn how to discuss mathematicswith other mathematicians not necessarily specialists in the same �eld as we are; and �nallyto be able to establish scienti�c links which women, isolated for a number of reasons, canrefer to at any stage in their professional career. We have been using the following structureas a model.1. Before the meetingStep 1: A scienti�c committee, chosen by the standing committee of EWM, selects threetopics in mathematics. Several considerations are taken into account when choosing thetopics:{ the topics should be in the avantgarde of current research;{ the topics should involve beautiful mathematics;{ the topics should try to include also branches of mathematics where, historically, for what-ever reasons, the presence of women seems more di�cult to detect.Step 2: Once the topics are chosen, the scienti�c committee chooses a coordinator for eachtopic. Several considerations are taken into account when choosing the coordinators:{ their knowledge of the �eld;{ their commitment to the project of making the transmission of mathematics a main goalof their work;{ their ability and will to work in team with others.Step 3: The coordinator selects the speakers for her topic. Several considerations are takeninto account when choosing the speakers:{ their knowledge of the �eld;{ their ability, or their will to improve their ability, to transmit knowledge.Step 4: Coordinators and speaker work together as a team in preparing the talks. Thedi�erent talks form a whole, and the level of di�culty should be progressive. Once a speakerhas been assigned a talk she is invited to give a written draft of her lecture to the coordinator.To ensure cross�eld dissemination, and, above all, understandability, the coordinator thendistributes these drafts among a few women mathematicians NOT specialists in the topic,



30who will read them and point out passages where assumptions are taken for granted, orneeding an example, or otherwise remaining obscure, etc. We call the crucial function of theseprofessionals \stupid readers", or \naive readers". The coordinator sends the comments ofthe non-specialists back to the speakers. The speakers make the appropriate corrections andchanges and return the text to the coordinators, who send them again to the readers for a�nal check.2. The lecturesMany are the questions that frame our work within the mathematical talks. Here are a fewof them:{ how do we create an atmosphere in which the audience feels free to ask questions?{ how do we balance the inevitably di�erent levels of knowledge about the topic in a generalmathematical audience?{ how do we balance the 
ow of questions with the 
ow of the speaker?{ how do we manage to be understood by non-specialists without deca�einating our exposi-tions?{ mathematics is di�cult; how can we make something clear and at the same time keep itsrichness, depth and not hide its di�culties?Common sense is a main tool we count on, but we know it is not su�cient. Commonsense, patience, and, as scientists, the will and inclination to experiment, try and �nd bysearching. Several strategies have been tested, and as our experience develops, so does thenumber of strategies that we see work adequately towards answering the above questions.Here are a few:{ one or two women volunteer to concentrate to their fullest ability in the talk and askquestions when they do not follow the speaker, or think this is the case for many inthe audience. We label this other crucial function \planted idiots". We think it worksbest if the planted idiot is actually naive in the �eld. Other questions are welcome asalways;{ the speaker knows ahead of time that when a question is posed by someone in the audience,if someone else knows a more clear or direct way of answering it, this person will speakup. In this way the 
ow and rhythm of the talk is easier to mantain; and, since thespeaker knows this might happen, she does not feel intruded or judged when it does;{ if interdisciplinary connections or other interesting discussions start taking place along thecourse of a talk, the coordinator of that topic should channel it into organizing a sidediscussion later, making sure there is a time and a space allowed for it and announced.



313. Writing and publishing the lecturesIt is our experience that this is the step where we should be more cautious, since mathemati-cians have the habit of writing only for specialists. Hence, a process analogue to that of step4 (before the meeting) is followed: each speaker sends a draft of the text to the coordinator.The coordinator should distribute this draft again among \naive readers", who will makesure the text is faithful to the version and comments agreed on before the actual talk. Thecoordinator receives the comments of the non-specialists and sends them back to the speaker.The speaker makes the appropriate corrections and returns the new corrected text to thecoordinator, who, in turn, sends them again to the readers for a �nal check.4. ConclusionAs one can deduce from the above summary, the mathematical part of an EWM meeting isconceived as a learning experience for ALL THE PERSONS taking part in it. Ideally:{ everyone will learn new mathematics, even the specialists. The advantage of speakingclearly to an interdisciplinary audience of mathematicians is that such situation rarelyfails to give as fruit the bringing out of connections or points of view thus far unknownto us;{ the speakers will improve their ability as lecturers and mathematical writers;{ everyone will improve her ability to speak about what she works on.Unfortunately, it is still the case in many European universities that women are singulari-ties within the mathematical departments. Frequently this has a well known inhibiting e�ecton us, resulting in lack of self-consciousness or defensiveness, both particularly negative whenwe start our professional path. And if we are inhibited, we do not speak about mathematics,and if we do not speak about mathematics we do not learn how to speak about mathematics,and the loop traps us. The vicious circle of communication, well-known to many, creates asteady isolation which becomes sterile and depressing, as opposed to the temporary isolationwhich is necessary to all creative work. In fact, we think many problems arise for women inmathematical research from the di�erent types of isolation (communication, life passages...)adding to the second, necessary one, and making it seem unbearable.5. Other forms: The Interdisciplinary workshopsAs we went on planning this EWM meeting we came along words which seem to have di�er-ent meaning in di�erent branches of mathematics. But often the use of the same words inmathematics points to a common root, a core idea. We think (!) it is one of our original con-tributions to organize workshops around a word, or an idea, to re-walk paths and rediscover,if not build, common ground on both language and conceptual basis. The �rst such encountertook place in Madrid, on \Moduli spaces", with speakers from algebraic geometry, numbertheory, hyperbolic geometry and quantum �eld theory. In Madrid the next interdisciplinaryworkshop was put forward, on the words \Renormalization Group". It will hopefully takeplace in June, 1996 in Paris, with contributions from statistical physics, quantum �eld theory,



32markov processes, holomorphic dynamics and real dynamical systems. These workshops arekept more informal, with several persons responsible for illustrating what they deem neces-sary to the core idea, or the strength of the results that follow in their �eld. Everybody elseis welcome to \pitch in" in workshop style.6. Poster sessionsUp to now, we have only once experienced a \poster session". We think it is quite a challengeto our creativity to rethink poster sessions in a way that makes them a good communicationtool. We are working on it.



Holomorphic DynamicsA short course organized by Caroline SeriesThe aim of the session was to present some of the basic facts and techniques in holomorphicdynamical systems, in particular those de�ned through iteration in the complex plane ofcomplex polynomials or polynomial-like mappings. All three talks discussed di�erent aspectsconcerning dynamical behaviours in the dynamical plane as well as properties of families ofsuch maps, represented in a parameter plane.The �rst talk given by Bodil Branner was an introduction, emphasizing the classical notionof normal families and its importance in the dynamical plane and the parameter plane (ofquadratic polynomials) in relation to Julia sets, and, respectively, the Mandelbrot set.The second talk given by N�uria Fagella focused on polynomial{like mappings and familiesof such, in particular Mandelbrot{like families, showing the importance of polynomials aslocal models of more general analytic maps.The third talk given by Tan Lei discussed two examples of transfer of results from thedynamical planes to the parameter plane, namely asymptotic self{similarities of Julia sets andthe Mandelbrot set, and the Hausdor� dimension of certain Julia sets and of the boundaryof the Mandelbrot set. Bodil Branner





Proc. of the 7th EWMmeeting, Madrid, 1995Holomorphic dynamical systems in the complexplaneAn introductionBodil BrannerTechnical University of Denmark, Denmarkbranner@mat.dtu.dk1. A short historic noteThe study of complex analytic dynamics began at the end of the previous century. The work(by Ernst Schr�oder, Leopold Leau, Gabriel Koenigs, Lucyan B�ottcher and others) was focusedon the local behavior of a complex analytic function (also called a holomorphic function) neara �xed point. With the work of �rst Arthur Caley and later Pierre Fatou and Gaston Juliathe focus changed from local to global behavior.Fatou and Julia studied { independently of each other { iteration of rational functions.A rational function f(z) = p(z)=q(z) is the quotient of two polynomials p and q which aresupposed to be relatively prime. The degree d of f is de�ned as the maximum value of thedegrees of the polynomials p and q. A rational function can be viewed as a map f : Ĉ ! Ĉwhere Ĉ = C [ f1g denotes the extended complex plane, the Riemann sphere.
Figure 1: The Riemann sphere.A rational function is holomorphic, and on the other hand, any holomorphic map f : Ĉ !Ĉ is a rational function. If d � 1 then f is surjective; in fact each point has d preimages(counted with multiplicity). Degree d = 1 corresponds to automorphisms of the Riemannsphere, the so called M�obius transformations, and degree d � 2 gives rise to interestingdynamical systems. 35



36 Bodil BrannerBoth Fatou and Julia made (1918 { 1920) intensive use of the theory of normal familieswhich had just been introduced and developed by Paul Montel (1912 { 1917) at the time.For a detailed description of the early history, see [A].Only few papers were published on complex dynamics between 1930 and 1980. But thesubject is again a very active area of research. Several new ideas and tools were introducedin the beginning of the eighties. Among them are computer graphics, quasi-conformal map-pings (introduced by Dennis Sullivan), polynomial-like mappings and transfer of results fromdynamical plane to parameter space (introduced by Adrien Douady and John H. Hubbard).In this short series of papers we will give examples of the above ideas and tools. This�rst paper contains basic de�nitions and results. There are very few proofs. Those which aresketched are chosen to illustrate the concept of normal families and to stress the importanceof repelling periodic points.2. PolynomialsIn the rest of the paper we restrict our attention to polynomials of degree d � 2. Polynomialsare exactly those rational functions with the property that f(1) =1 = f�1(1): But mostoften we just think of a polynomial as acting in the complex plane.To study a polynomial P as a dynamical system means to study the long term behaviorfor di�erent seeds z0 of the sequencez0; z1 = P (z0); : : : ; zn = P (zn�1) = Pn(z0); : : : ;called the orbit of z0 under iteration. The dynamics take place in the z-plane, the dynamicalplane.The goal is both to understand each individual dynamical system for a �xed polynomialP , and to understand how the systems change qualitatively with the polynomial.In order to understand the dynamics of all polynomials of degree d it is su�cient toconsider monic, centered polynomials of the formP (z) = zd + cd�2zd�2 + � � �+ c1z + c0;any polynomial F of degree d is namely conjugate to a polynomial of this form through aglobal a�ne coordinate change z 7! az + b; a 6= 0: In other words, the following diagram iscommutative C F���! Cz 7!az+b??y ??yz 7!az+bC ���!P CWe identify the set of monic, centered polynomials with the parameter space C d�1 =f(cd�2; : : : ; c0)g: The polynomials are called centered since the critical points are centered,i.e. X!2
(P )! = 0where 
(P ) denotes the set of critical points, i.e. 
(P ) = fz 2 C j P 0(z) = 0g:



Bodil Branner 37The monic, centered quadratic polynomials are of the formQc(z) = z2 + cwith one critical point ! = 0: All the examples we give, will be from this family of quadraticpolynomials. The family is identi�ed with C , the c-plane, also called the parameter plane; itshould not be confused with the dynamical plane.3. The Julia set, the �lled Julia set and the Fatou setFor each polynomial P the dynamical plane is decomposed into two complementary sets: theset of points with bounded orbit and the set of points whose orbit tends to1: We denote byK(P ) the �lled Julia set, that is the set of seeds with bounded orbitK(P ) = fz 2 C j Pn(z)91 as n!1g:We denote by AP (1) the set of seeds with orbit tending to 1:AP (1) = fz 2 C j Pn(z)!1 as n! 1g:The set AP (1) is called the attractive basin of 1: Both sets are completely invariant underiteration, i.e. under both forward and backward iteration. The common boundary@K(P ) = @AP (1) = J(P )is called the Julia set.Figure 2 shows in black the Julia sets for di�erent quadratic polynomials Qc.Example. Consider the simplest quadratic polynomial Q0(z) = z2: The �lled Julia setK(Q0) equals �D , the closure of the unit disk; the attractive basin AQ0(1) equals C n �D , theexterior of the closed unit disk, and the Julia set J(Q0) equals S1, the unit circle.The above de�nition of the Julia set is simple, but only valid for polynomials. Manyresults about Julia sets can only be obtained from the classical and general de�nition of Juliasets, using the concept of complex analytic normal families. We therefore give this de�nitionas well.Normal family. Let U � C be an arbitrary domain. A family F = ffi : U ! C gi2I ofanalytic functions is said to be normal if any in�nite sequence of functions from F contain asubsequence that either converges in C or tends to 1, uniformly on each compact subset ofU: In complex dynamics we are interested in the families F(U) = fPn jU : U ! C gn�0 ofiterates of the polynomial in question, restricted to arbitrary domains U:A point z 2 C is said to be normal if there exists a neighborhood U of z such that thefamily F(U) = fPn jUgn�0 is normal.De�nition. The Fatou set F (P ) is the set of normality, that is F (P ) = fz 2 C j z normal g,and the Julia set J(P ) is the complement of F (P ) or the set of non-normality. A connectedcomponent of the open set F (P ) is called a Fatou component.Note that the �lled Julia set is the Julia set �lled with all the bounded Fatou components.Example (revisited). Consider again the quadratic polynomial Q0(z) = z2: The family F(D)is normal, since each subsequence of the iterates restricted to D converges to the constant



38 Bodil Branner

Figure 2: Julia sets of the polynomials Qc for di�erent values of c.



Bodil Branner 39function equal to 0, uniformly on any compact set �Dr = fz 2 C j jzj � rg with 0 < r < 1: Thefamily F(C n �D ) is normal, since each subsequence of the iterates restricted to C n �D convergesto the constant function equal to 1, uniformly on any set C nDR = fz 2 C j jzj � Rg withR > 1: No point on the unit circle is normal. The Fatou set is therefore C nS1 , and the Juliaset as before.Montel proved a useful criterion for normality.Montel's criterion. Simplest form: Any family of analytic functions de�ned on a domainU taking values in the plane minus two points, C n fa; bg, is normal.Generalized form: Let hj : U ! C ; j = 1; 2; be two analytic functions, satisfying h1(z) 6=h2(z) for all z 2 U: Any family of analytic functions de�ned on U with values at any z 2 Uwhich di�er from h1(z) and h2(z) is normal.Note that it follows, that for any neighborhood U of a point in the Julia set the union oforbits which start in U , Sn�0 Pn(U), is equal to C except at most one point. Using thisproperty one can prove that the Julia set is a perfect set, that is a closed set where any pointis a limit point in the set; the Julia set has therefore no isolated points.4. Periodic and preperiodic pointsA point z0 is called p-periodic ifzp = z0 and zj 6= z0 for 0 < j < p;a �xed point is a 1-periodic point and a p-periodic point is a �xed point of P p: A periodicorbit is called a cycle. A point z0 is called preperiodic of preperiod k � 1 and period p ifzk+p = zk is a p-periodic point and zj 6= zk for 0 < j < k;see �gure 3.
Figure 3: Periodic and preperiodic orbits.The multiplier � of a p-periodic point z0 is de�ned as the derivative of P p at z0: Using thechain rule we obtain � = (P p)0(z0) = P 0(zp�1) � � � � � P 0(z0);the derivative of P p is therefore the same at all points of the cycle. For this reason � is alsocalled the multiplier of the cycle.We call a cycle



40 Bodil Branner1. attracting if j�j < 1;2. superattracting if � = 0;3. repelling if j�j > 1;4. indi�erent if j�j = 1:Note that a cycle is superattracting if and only if it contains a critical point.An indi�erent cycle has multiplier of the form � = e2�i�: The cycle is called rationallyindi�erent or parabolic if � is rational, and irrationally indi�erent otherwise.A periodic point z0 of period p is called linearizable if there exists a local holomorphicchange of coordinates so that P p in these coordinates is of the form � 7! �� where � is themultiplier.Theorem 1 (Koenigs) An attracting, but not superattracting periodic point is linearizable.A repelling periodic point is linearizable.Proof. A sketch. Assume z0 = 0 is an attracting, but not superattracting, �xed point. Since0 <j � j< 1 there is a neighborhood U of 0 such that P (U) � U: Set 'n(z) = Pn(z)=�n forz 2 U . Then 'n(P (z)) = �'n+1(z):The holomorphic functions 'n converge in U , uniformly on compact subsets, to a holomorphicmap ' with derivative '0(z0) = 1, de�ning the required local coordinate change.For a repelling �xed point we reduce the situation to the above, by considering the branchof P�1 which �xes the �xed point.For periodic points of period p we consider P p instead of P .The linearizing coordinates are uniquely determined with the extra requirement: '0(z0) =1: Note that it follows from the implicit function theorem that a p-periodic point with multi-plier j�j > 1 can be followed analytically in the parameters in a neighborhood of the polyno-mial, and in a su�ciently small neighborhood the point remains a p-periodic repelling point.Moreover, the linearizing coordinates vary analytically with the parameters.Example. Consider again Q0(z) = z2: The point z0 = 1 is a repelling �xed point withmultiplier � = 2: Set '(z) = Log z, the principal branch of the logarithm de�ned in thedomain C n fz 2 C j Rez � 0; Imz = 0g: Then ' is the linearizing coordinate change. Forz = re2�it; r > 0;��=2< t < �=2 we have'(Q0(z)) = �'(z) and '0(1) = 1:The �xed points for the quadratic polynomials Qc are solutions to z2 + c = z; hence of theform z = 1=2 �p1=4� c. The analytic continuation of the repelling �xed point z0 = 1 isgiven by c 7! 1=2 +p1=4� c where p denotes the principal branch of the root function.A superattracting periodic point z0 is of course not linearizable. In the superattractingcase there exists a coordinate change so that P p in these coordinates is of the form � 7! �kwhere k is the smallest integer n for which the n-th derivative of P p at z0 is di�erent from0. Such coordinates play an important role in the analysis of the local behavior around



Bodil Branner 41superattracting orbits; in particular around 1 which is a superattracting �xed point forall polynomials. For a monic polynomial the coordinates are uniquely determined with theextra requirement '(z)=z! 1 as z !1: They are called B�ottcher coordinates and provide acoordinate change so that P in these coordinates is of the form � 7! �d where d is the degreeof the polynomial.To �nish the list: A rationally indi�erent periodic point z0 is not linearizable. An irra-tionally indi�erent periodic point z0 is called Siegel if it is linearizable and Cremer if it isnot.A periodic point is contained in the Fatou set if it is attracting or Siegel. All other periodicpoints are contained in the Julia set. The repelling periodic points are of special interest.Theorem 2 The Julia set is the closure of the repelling periodic points.The theorem corresponds to Julia's de�nition of the Julia set, while Fatou used the conceptof normal families.Proof. The proof has two steps:Step 1. The Julia set is contained in the closure of the periodic points.Step 2. There are only �nitely many non-repelling cycles.We sketch the �rst step, and comment on the second step at the end of the next section.Assume the statement is false. Then there exists a point z0 2 J(P ) and a neighborhood U ofz0 without any periodic points. We may assume that z0 is not a critical value (the image ofa critical point) since there are only �nitely many critical values for P . Furthermore we mayassume that P has a local inverse h1 de�ned on U with h1(U) and U disjoint. Set h2(z) = z:It follows that the family F(U) = fPn jUgn�0 satis�es Montel's normality criterion withrespect to the two analytic functions hj ; j = 1; 2: This contradicts that z0 is in J(P ) andtherefore a non-normal point.5. Classi�cation of periodic Fatou componentsA Fatou component is mapped onto a Fatou component by P: We call a Fatou componentV periodic if P p(V ) = V for some p > 0; preperiodic if P k(V ) is periodic for some k > 0and wandering otherwise. For a polynomial the attracting basin of 1 is always a periodicFatou component of period 1. For a polynomial the di�erent possibilities are listed in theclassi�cation theorem below.Theorem 3 Let V denote a bounded, periodic Fatou component of period p: Then V is oneof the following three types:1. Attracting basin. There is a p-periodic attracting point z0 2 V and all points in Vconverge to z0 under iteration of P p:2. Parabolic basin. There is a parabolic point z0 2 @V; which is �xed under P p andsatis�es (P p)0(z0) = 1; and all points in V converge to z0 under iteration of P p: (Notethat the period p0 of the periodic point z0 may be a divisor of p, and the multiplier ofz0 a root of unity which raised to the power p=p0 equals 1:)



42 Bodil Branner3. Siegel disk. There is a p-periodic irrationally indi�erent point z0 2 V which is lineariz-able, the linearizing coordinates are de�ned on V and the iterate P p in these coordinatesexpressed as the irrational rotation � 7! e2�i�� where � = e2�i� is the multiplier.In �gure 4 we show examples of the three types above. A superattracting basin is alsocalled a B�ottcher domain and an attracting (but not superattracting) is called a Schr�oderdomain. A Parabolic basin is also called a Leau domain.Already Fatou made an exhaustive list of possible types of Fatou components, includingthe possibility of wandering components. Only the �rst two possibilities in the classi�cationtheorem were known by Fatou to exist, the existence of the third was proved by Carl Siegelin 1942.The �nal break through came when Sullivan in 1982 proved the following theorem, usingquasi-conformal mappings.Theorem 4 (Sullivan) There are no wandering Fatou components for a rational function.The non-wandering theorem implies that any Fatou component is either itself periodic ofone of the above mentioned three types or eventually mapped onto such a periodic Fatoucomponent.Relation to critical points. Each type of periodic Fatou components is related to a criticalpoint. Let V be a p-periodic Fatou components as above, and set V = Sp�1j=0 P j(V ). If V isan attracting basin or a parabolic basin then V contains a critical point (compare with �gure4). If V is a Siegel disk then the boundary of V is contained in the closure of the orbit of acritical point.Note that this implies that a polynomial of degree d can have at most d� 1 cycles whichare attracting or parabolic. The statement is in fact also true if we add Cremer and Siegelcycles to the list. (The proof is using the notion of polynomial-like mappings.) A polynomialof degree d can therefore have at most d� 1 non-repelling cycles.It also follows from the classi�cation theorem that if none of the critical points are attractedto attracting or parabolic cycles and if there are no Siegel disks, then K(P ) = J(P ): Forquadratic polynomials this happens for instance if the critical point is preperiodic. Such apolynomial is called a Misiurewicz polynomial. The periodic orbit which the critical pointeventually lands on, is always repelling.6. Hausdor� distance and dependence of Julia sets and �lledJulia sets on the polynomialBoth the �lled Julia set and the Julia set are non-empty compact sets in the complex plane.The Hausdor� distance DH de�nes a metric in the set Comp�(C ) of non-empty compactsubsets of the complex plane. Given this metric, one can discuss whether the �lled Julia setK(P ) and the Julia set J(P ) depend continuously on the polynomial or not.Hausdor� distance. Let d denote the Euclidean distance in C ; and de�ne for A;B 2Comp�(C ) �(A;B) = supa2Ad(a; B)and DH(A;B) = max(�(A;B); �(B;A)):



Bodil Branner 43

Figure 4: The three di�erent types of Fatou domains: attracting, parabolic and Siegel.



44 Bodil BrannerObserve that it follows from the de�nition of � that for any � � 0�(A;B) � � () A � B�where B� is the �-neighborhood of B; i.e. B� = fz 2 C jd(z; B) � �g: Moreover, the triangularinequality holds, i.e.�(A;C) � �(A;B) + �(B;C) for all A;B;C 2 Comp�(C ):With these two properties of � it follows that DH is a metric in the space Comp�(C ); in facta complete metric.Note that �(A;B1) � �(A;B2) if B1 � B2:The �lled Julia set and the Julia set do not in general depend continuously on the poly-nomial. The general statement is formulated in the following theorem where the polynomialsare assumed to be of a �xed degree.Theorem 5 (1) The map P 7! K(P ) satis�es�(K(P ); K(P0))! 0 when P ! P0:(2) The map P 7! J(P ) satis�es�(J(P0); J(P ))! 0 when P ! P0:Recall that we have identi�ed the family of polynomials of degree d with C d�1 . That Ptends to P0 therefore means that the coe�cients of P tend to the coe�cients of P0:Corollary 6 Suppose K(P0) = J(P0) for a polynomial P0: Then both P 7! K(P ) and P 7!J(P ) are continuous at P0:Proof. The proof of (1) is more involved that the proof of (2) (see [D]). The proof of (2) iseasy and relies essentially on the fact that the repelling periodic points are dense in the Juliaset. We sketch the proof of (2).Fix a polynomial P0 and an � > 0: Choose a �nite number of repelling periodic points inJ(P0), say X0 = fx1; : : : ; xNg; such thatJ(P0) � N[j=1D(xj ; �2);whereD(xj ; �2) denotes the open disk centered at xj and of radius �=2:We have �(J(P0); X0) ��=2:Suppose xj is pj-periodic, thenP pj0 (xj)� xj = 0 and j�jj =j (P pj0 )0(xj) j> 1:It follows from the implicit function theorem that there exists a neighborhood U of P0 in theparameter space and analytic functions P 7! �j(P ) for P 2 U so that �j(P0) = xj and �j(P ) isa repelling pj-periodic point. We can assume that U is chosen so small that d(xj ; �j(P )) < �=2for all P 2 U : Set X(P ) = f�1(P ); : : : ; �N(P )g; then �(X0; X(P )) � �=2 for all P 2 U : Since



Bodil Branner 45X(P ) � J(P ) for all P 2 U ; it follows that �(X0; J(P )) � �(X0; X(P )) and therefore that�(J(P0); J(P )) � � for all P 2 U :Note that the Julia set and the �lled Julia set are functions which are continuous at anyquadratic Misiurewicz polynomial (i.e. a polynomial where the critical point 0 is preperiodic).One can prove that the Julia set varies dis{continuously at any polynomial with a Siegelcycle, and that both the Julia set and the �lled Julia set vary dis{continuously at a polynomialwith a parabolic cycle (see again [D]).7. Parameter space, the Mandelbrot setThe goal is to decompose the parameter space into regions corresponding to qualitativelydi�erent dynamical behavior. This is in general a very hard problem. In complex dynamicswe divide the parameter space according to qualitatively di�erent behaviors of the �nitelymany critical points. This turns out to be a good strategy.We have already seen, that the critical points play an important role in connection withthe classi�cation theorem of periodic Fatou components. Another result connected with thecritical points is expressed in the following classical theorem, known to Fatou and Julia. Notethat this is a global result.Theorem 7 (Fatou, Julia) The �lled Julia set K(P ) is connected if and only if the criticalpoints are contained in K(P ).The parameter space of monic, centered polynomials is decomposed into two complemen-tary sets: the connectedness locus corresponding to polynomials with connected �lled Juliaset, and the rest, corresponding to polynomials with disconnected �lled Julia set.The Mandelbrot set M is de�ned as the connectedness locus for the family of quadraticpolynomials QcM = fc 2 C j K(Qc) is connectedg = fc 2 C j Qnc (0)91 as n!1g;see �gure 5.The �rst theorem about the Mandelbrot set was the following, proved by Douady andHubbard in 1981:Theorem 8 (Douady, Hubbard) The Mandelbrot set is connected.The de�nition of the Mandelbrot set is very rough, it is surprising that it turns out togive the detailed decomposition of the parameter plane we are interested in. The boundaryof the Mandelbrot set is the bifurcation set, i.e. the set where the qualitative changes occur.It follows from a theorem of Ma~n�e, Sad, Sullivan that any two polynomials Qcj ; j = 1; 2;in the same connected component of C n @M are J-equivalent. That means, there exists ahomeomorphism H : J(Qc1)! J(Qc2) conjugating the dynamics, i.e. the following diagramis commutative J(Qc1) Qc1���! J(Qc1)H??y ??yHJ(Qc2) ���!Qc2 J(Qc2)



46 Bodil Branner
Figure 5: The boundary of the Mandelbrot set.Figure 6 shows two Julia sets that are J-equivalent. The parameters are chosen in M inthe same connected component of C n @M:

Figure 6: J-stability.The Mandelbrot set can also be de�ned within the concept of normal families. SetF1(c) = c; Fn(c) = (Fn�1(c))2+ c for n > 1:For a �xed c the sequence (0; F1(c); : : : ; Fn(c); : : :) is just the orbit of the critical point 0under iteration by Qc: If c =2M then Fn(c)!1 as n!1: If c 2M then jFn(c)j � 2 for alln: It follows, that points in @M are non{normal for the family F = fFngn�0, while points inthe complement are normal. The boundary of M is therefore the set of non{normality.This alternative de�nition can be used to prove the following theorem about Misiurewiczpolynomials:



Bodil Branner 47Proposition 9 Misiurewicz polynomials are dense in the boundary of the Mandelbrot set.Proof. Assume the statement is false. Then there exists a point c in @M and a simplyconnected neighborhood U of c without any Misiurewicz polynomials. We may assume thatc 6= 1=4: Let gj : U ! C ; j = 1; 2; denote the two branches of the square-root of (1=4� c):Then hj(c) = 1=2 + gj(c); j = 1; 2; determine the two �xed points of Qc. They di�er sincec 6= 1=4: It follows that the family F = fFn jUgn�0 satis�es Montel's normality criterion withrespect to the two analytic functions hj ; j = 1; 2: This contradicts that c in @M and thereforea non-normal point.Observe, that we have proved more than stated: the set of Misiurewicz points for which0 is eventually mapped onto a �xed point is dense in the boundary. The same kind of proofwould give that Misiurewicz points for which 0 is eventually mapped onto a periodic orbit ofperiod p is dense in the boundary for any �xed p:Universality of the Mandelbrot set is discussed in Nuria Fagella's paper. Properties ofMisiurewicz polynomials are discussed further in Tan Lei's paper.References[A] Daniel S. Alexander, A History of Complex Dynamics. From Schr�oder to Fatou andJulia, Aspect of Mathematics, Vieweg, 1994.[B] Bodil Branner, The Mandelbrot set, in Chaos and Fractals. The Mathematics Behindthe Computer Graphics, Proc. of Symposia in Appl. Math., AMS, Vol. 39, 1989, pp.75 { 105.[D] Adrien Douady, Does the Julia set depend continuously on the Polynomial ?, in ComplexDynamical Systems, Proc. of Symposia in Appl. Math., AMS, Vol. 49, 1994, pp. 91 {138.[DH1] Adrien Douady and John H. Hubbard, �Etude dynamique des polynôme complexes, I,II, Publications Mathematiques d'Orsay, 1984, 1985.[DH2] Adrien Douady and John H. Hubbard, On the dynamics of polynomial{like mappings,Ann. Ecole Norm. Sup. (4), Vol. 18 (1985), pp. 287 { 343.[MSS] Ricardo Ma~n�e, Pablo Sad and Dennis Sullivan, On the dynamics of rational maps, Ann.Ecole Norm. Sup. (4), Vol. 16 (1983), pp. 193 { 217.[S] Dennis Sullivan, Quasi-conformal maps and dynamical systems I. Solutions of theFatou-Julia problem on wandering domains, Ann. Math. 122 (1985), pp. 401 { 418.[St] Norbert Steinmetz, Rational Iteration, Complex Analytic Dynamical Systems, de GruyterStudies in Mathematics, Vol. 16, Walter de Gruyter, 1993.





Proc. of the 7th EWMmeeting, Madrid, 1995The theory of polynomial-like mappings{ The importance of quadratic polynomialsN�uria FagellaUniv. Aut�onoma de Barcelona, Spainnuria mat.uab.es1. IntroductionIn the �eld of complex dynamics and, in particular, iteration of functions of one complexvariable, the topic that has by far been object of the most attention is the iteration of thefamily of quadratic polynomials Qc := z2+ c. In this paper we aim to answer the question ofwhy this very particular family of polynomials is important for the understanding of iterationof general complex functions.This is the second paper in the \Complex Dynamics" series of EWM 95. We assume thatthe reader is familiar with the basic de�nitions and theorems concerning the dynamics ofquadratic polynomials which are the topic of the �rst article [Br3]. For other surveys we referalso [Bl1, Br1] and [Mi].As a �rst observation we may say that often, a good place to start is the simplest example,in this case the group of M�obius transformations which are already very well understood.The next simplest class of functions is the class of polynomials of degree two and eventhat early along the way, we already bump into complicated dynamics which have occupiedmathematicians in this �eld for over twenty years, and still do.But the real answer to the question has basically one name and that is the theory ofpolynomial-like mappings of A. Douady and J. Hubbard. This theory explains how theunderstanding of polynomials is not only interesting per s�e , but helps understand a muchwider class of functions namely those that locally behave as polynomials do.Most of the de�nitions and results in this paper may be found in the work of Douadyand Hubbard \On the Dynamics of Polynomial-like Mappings" [DH3]. Our goal is to statetheir most important results as well as to give several examples that illustrate them. Theseexamples serve also as initial motivation: example B concerns families of cubic polynomialswhose dynamical planes exhibit homeomorphic copies of quadratic �lled Julia sets (see Figs. 5and 6), while their parameter spaces contain homeomorphic copies of the Mandelbrot set (seeFig. 12); example C deals with the family of entire transcendental functions f�(z) = � cos(z)for which the same phenomena occur (see Figs. 7 and 13); �nally, example D shows howwe �nd copies of the Mandelbrot set in the Mandelbrot set itself (see Figs. 8, 9 and 14).Examples of the same phenomena for Newton's method may be found in [BC, CGS, DH3, T]49



50 N�uria Fagellaand in [F] for the family z 7! �zez .This work is divided in two parts, the �rst one concerning the dynamical planes andthe second one the parameter spaces. Section 2 contains the de�nition of a polynomial-likemap and sets up the examples that we follow throughout the paper. In Section 2 we statethe straightening theorem (Theorem 2) which explains how polynomial-like maps and actualpolynomials are related. Along the way, we give a small survey of the di�erent types ofconjugacies that may occur. Section 2 contains the parameter-plane version of the straight-ening theorem, explaining why we �nd homeomorphic copies of the Mandelbrot set in theparameter planes of other families of functions.Figure 12 was borrowed from [Br2] by courtesy of Bodil Branner. All other computerillustrations in this paper were created with the program It by Christian Mannes, whom Ithank for his assistance and patience.2. Dynamical Plane2.1. The De�nition of a Polynomial-like MapDe�nition A polynomial-like map of degree d � 2 is a triple (f; U 0; U) where U and U 0 areopen sets of C isomorphic to discs with U 0 � U and f : U 0 �! U is a holomorphic map suchthat every point in U has exactly d preimages in U 0 when counted with multiplicity.
Figure 1: The three elements (f; U 0; U ) that form a polynomial-like map.For the examples throughout the paper the following de�nition will be necessary.De�nition Let P (z) be a polynomial of degree d � 2 and let '(z) be the B�otcher coordinatesat in�nity (see [Br3]). It is a fact that if all critical points of P belong to the �lled Julia setK(P ) then ' can be extended to map the complement of K(P ) to the complement of theunit disk. We de�ne an equipotential curve of potential � to be the preimage under ' of acircle of radius e�. It follows then that an equipotential curve of potential � is mapped underP to an equipotential curve of potential d� with degree d.Example A The obvious example is an actual polynomial of degree d, restricted to a largeenough open set. Let P be a polynomial of degree d � 2 and let �0 be an equipotential curveof P of some given potential � such that it is a single simple curve. Then, � := P (�0) is anequipotential curve of potential d�. If we let U 0 and U be the open sets enclosed by �0 and� respectively then, the triple (P jU 0; U 0; U) is a polynomial like map (see �g. 2). Note thatwe do not necessarily have to choose the open sets as regions enclosed by equipotentials. Infact, if we let V 0 be any large enough disk then V := P�1(V 0) is an open set contained in Vand (P jV 0 ; V 0; V ) is another polynomial-like map.
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Figure 2: The restriction of two polynomials of degree two as polynomial-like maps. Left: Q�1(z) =z2 � 1 with connected Julia set. Right: Qc(z) where c w �0:8 + 0:4i, with totally disconnected Juliaset.Example B In this example we want to consider some polynomials of degree three whichrestricted to an open set form a polynomial-like map of degree two. Let P be a cubicpolynomial with one critical point !1 escaping to in�nity under iteration and the otherone, !2,remaining bounded. Let � be the equipotential curve that has the critical valuev1 := P (!1) as one of its points and let U be the open set bounded by �. Then, the preimageof � under P is a �gure eight curve, since all points on � have three preimages with theexception of the critical value v1 that has only two preimages (see �g. 3). This �gure eightbounds two connected components. Let U 0 be the open connected component that containsthe critical point !2 with a bounded orbit. Then, U 0 maps to U with degree two, i.e., everypoint in U has exactly two preimages in U 0. The triple (P jU 0; U 0; U) is a polynomial-like mapof degree two. (Notice that if we choose sets U 0 and U as we did in example A, we wouldobtain a polynomial-like map of degree three.) We have chosen a polynomial of degree threefor the sake of the example but it is clear that similar situations would occur with polynomialsof any degree, with critical points escaping and not escaping to in�nity.
Figure 3: The restriction of a cubic polynomial to create a polynomial-like map of degree two.Example C Let f(z) = � cos(z) and let U 0 be the open simply connected domainU 0 = fz 2 C j jIm(z)j < 1:7; j � � � Re(z)j < 2g;and set U = f(U 0). One can check that U 0 � U , as shown in Fig. 4. Since U 0 contains onlyone critical point ! = ��, it follows that f maps U 0 to U with degree two. Hence the triple(f jU 0; U 0; U) is a polynomial-like of degree two.



52 N�uria FagellaExample D Sometimes a polynomial-like map is created as some iterate of a functionrestricted to a domain. For example, let Qc(z) = z2 + c and let c0 w �1:75778+ 0:0137961i.Set U 0 = fz 2 C j jIm(z)j < 0:2; jRe(z)j < 0:2g:One can check that the polynomial Q3c0 maps U 0 onto a larger set U with degree 2, as shownin Fig. 4. The triple (Q3c0 jU 0; U 0; U) is a polynomial-like map of degree two.
Figure 4: The restriction of f(z) = � cos(z) (left) and Q3c0(z) (right) to create polynomial-like mapsof degree two.This is an example of what is called renormalization. We say that a quadratic polynomialis renormalizable if there exist open disks U 0 and U and an integer n such that (fnjU 0; U 0; U)is polynomial like of degree two. Renormalization is a very important topic in the �eld ofcomplex dynamics. (See [Mc]).2.2. The Filled Julia SetThe �lled Julia set and the Julia set are de�ned for polynomial-like maps in the same fashionas for polynomials, keeping in mind that a polynomial-like map is de�ned only in an opensubset of C .De�nition Let f : U 0 �! U be a polynomial-like map. The �lled Julia set of f is de�nedas the set of points in U 0 that never leave U 0 under iteration, i.e.,Kf := fz 2 U 0 j fn(z) 2 U 0 for all n � 0g:An equivalent de�nition is Kf = \n�0 f�n(U 0);and from this expression it is clear that Kf is a compact set.As for polynomials, we de�ne the Julia set of f asJf := @Kf :Notice that if the map f is the restriction of some polynomial F to a set U 0 then, ingeneral, Kf $ KF . As an example consider example B above where F is a polynomial of



N�uria Fagella 53degree three and f its restriction to the set U 0 in Fig. 3. Notice that U 0 maps to U with degreetwo. The other connected component of F�1(U) which we denote by V , maps to U withdegree one. Hence, there are points in U 0 that map to V and come back to U 0 afterwards,never leaving the set U . Such points do not belong to Kf since they are not in U 0 at all timesbut they belong to KF since they do not escape to in�nity under iteration. Hence Kf $ KFand moreover, a connected component C of KF is either a connected component of Kf or itis disjoint from Kf , since F maps connected components of KF to connected components.Therefore KF might have more connected components than Kf but not larger ones.2.3. The Relation with PolynomialsThe Straightenning Theorem stated in this section shows that the relation between polynomial-like maps and actual polynomials is actually very strong. In order to state it, we need toreview the di�erent types of equivalences between holomorphic maps.Equivalences or conjugacies of mapsSuppose f : U 0 �! U and g : V 0 �! V are two polynomials-like maps of degree d. Theweakest, but very important equivalence between f and g is what we call topological equiva-lence or topological conjugacy and denote by �top.De�nition We say that f �top g if there exists ' a homeomorphism from a neighborhoodN(Kf) of Kf to a neighborhood N(Kg) of Kg such that the following diagramN 0(Kf) f���! N(Kf)'??y ??y'N 0(Kg) g���! N(Kg)commutes, where N 0(Kf) � N(Kf) and N 0(Kg) � N(Kg).If two functions are topologically conjugate, their dynamics are qualitatively \the same",since the conjugacy ' must map orbits of f to orbits of g, periodic points of f to periodicpoints of g, critical points of f to critical points of g, etc. In particular, Kf must be mapped toKg, but since ' is only a homeomorphism these sets could look quite di�erent. For example,all quadratic polynomials that belong to a given hyperbolic component of the Mandelbrotset (except the center) are topologically equivalent. All polynomials in the complement ofthe Mandelbrot set are also topologically conjugate. (In fact, these conjugacies are globalconjugacies. See remark below.)On the other hand, the strongest type of equivalence between two holomorphic maps isconformal equivalence, due to the rigidity of holomorphic maps.De�nition We say that f �conf g if f �top g and the homeomorphism ' is conformal.Remark 1 If we were dealing with maps de�ned in the whole complex plane we couldconsider also global conjugacies between them. In such a case, if two maps are conformallyconjugate then they must be conjugate by an a�ne map '(z) = az + b, since holomorphicisomoprhisms from C to itself are a�ne. For the quadratic family, one can easily check thatthere is a unique representative in each a�ne class, that is, if Qc1 and Qc2 are a�ne conju-gate, then c1 = c2.



54 N�uria FagellaThe concept of quasi-conformal maps appears when we want to consider conjugacies thatare stronger than topological, but weaker than conformal.Quasi-conformal mappings For a homeomorphism, we do not have any control whatso-ever in how angles are distorted. On the other hand, conformal maps have to preserve angles.Intuitively, a map is quasi-conformal if we have some control on the distortion of angles evenif these are not preserved, i.e. the distortion of angles is bounded.The precise de�nition is very intuitive if we assume that the map is di�erentiable. Thisis not such a crude assumption given the fact that quasi-conformal maps are di�erentiablealmost everywhere. If ' is a di�eomorphism, the tangent map at a given point z0, takes acertain ellipse in the tangent space at z0 to a circle in the tangent space at '(z0). We de�nethe dilatation of ' at z0, D'(z0), as the quotient of the length of the major axis over thelength of the minor axis of this ellipse.De�nition Let ' : U ! V be a di�eomorphism and D' = supz2UD'(z). Then, ' is K-quasi-conformal if D' � K <1.If we do not assume the map to be di�erentiable, we can express its distortion in terms ofmoduli of annuli.De�nition Let ' be a homeomorphism. Then, ' is K-quasi-conformal if for all annuli Ain the domain 1Kmod(A) � mod('(A)) � Kmod(A)Note that a map is 1-quasi-conformal if and only if it is conformal.For those that prefer analytic de�nitions one can de�ne quasi-conformal maps as follows:De�nition Let ' be a homeomorphism. Then ' is K-quasi-conformal if locally it hasdistributional derivatives in L2 and the complex dilatation �(z) de�ned locally as�(z)dzdz = @z'@z' = @'@z@'@z dzdzsatis�es j�j � K�1K+1 := k < 1 almost everywhere.For more on quasi-conformal mappings see [A] and [LV].Quasi-conformal conjugacies and hybrid equivalences We de�ne a quasi-conformalconjugacy (f �qc g) by requiring the homeomorphism ' in the topological conjugacy to beK-quasi-conformal for some K � 1. We say that f and g are hybrid equivalent (f �hb g) ifthey are quasi-conformally conjugate and the conjugacy ' can be chosen so that @z' = 0almost everywhere on Kf . If Jf has measure zero, this simply means that ' is holomorphicin the interior of Kf . Clearlyf �conf g =) f �hb g =) f �qc g =) f �top g:



N�uria Fagella 55The Straightening TheoremThe relation between polynomial-like mappings and actual polynomials is explained in thefollowing theorem, whose proof can be found in [DH3].Theorem 2 Let f : U 0 �! U be a polynomial-like map of degree d. Then, f is hybridequivalent to a polynomial P of degree d. Moreover, if Kf is connected, then P is unique upto (global) conjugation by an a�ne map.This theorem explains why one �nds copies of Julia sets of polynomials in the dynamicalplanes of all kinds of functions. Notice that if f is polynomial-like of degree two and Kfis connected then f is hybrid equivalent to a polynomial of the form Qc(z) = z2 + c for aunique value of c by remark 2. This may also be true for other families of polynomial-likemaps of degree larger than two, as long as the resulting class of polynomials has a uniquerepresentative in each a�ne class. (As examples, consider the families �z(1+z=d)d, � 2 C nf0gfor any d > 2).Example B.1 In the setting of example B in Sect.2, we consider the polynomial Pa(z) =z3 � 3a2z � 2a3 � a. One can check that for all values of a, the critical point !2 = �a isa �xed point. If we take, for example, a = �0:6 then the critical point !1 = a escapes toin�nity. By the Straightening Theorem, P�0:6(z) restricted to the open set U 0 as de�ned inexample B, is hybrid equivalent to a quadratic polynomial and hence, to a polynomial of theform Qc(z) = z2 + c. In this case, we know that the parameter c must be 0, since Q0(z) isthe only quadratic polynomial of this form with the critical point being �xed. In Fig. 5, weshow the dynamical plane of Q0 and that of P�0:6.
Figure 5: Left: the �lled Julia set of Q0(z) = z2 in white. Right: the �lled Julia set for P�0:6(z)in white. Note that only the largest component in U 0 corresponds to the �lled Julia set of thepolynomial-like map of degree 2.Example B.2 Again in the setting of example B in sect. 2, we consider the polynomialRa(z) = z3 � 3a2z + (1=2)(p9a2 � 4 + a � 4a3). One can check that for all values of a, thecritical point c2 = �a is a point of period 2. In this case we take a = �0:75 and then, thecritical point c1 = a escapes to in�nity. By the straightening theorem, R�0:75(z) restrictedto the open set U 0 as above, is hybrid equivalent to a quadratic polynomial and hence, to a



56 N�uria Fagellapolynomial of the form Qc(z) = z2 + c. In this case, we know that the parameter c must be�1, since Q�1(z) is the only quadratic polynomial of this form with the critical point beingof period two. In Fig. 6, we show the dynamical plane of R�0:75, to be compared with thatof Q�1 in Fig. 2.
Figure 6: The �lled Julia set for R�0:75 in white. Note that only the largest component in U 0corresponds to the �lled Julia set of the polynomial-like map of degree 2. This �gure is to be comparedwith Fig. 2 left.Example C Even though the function f(z) = � cos z is an entire transcendental function,when restricted to the set U 0 (as de�ned in Sect. 2) it is a polynomial-like map of degree two.In Fig. 7, we see in white the set of points that do not escape to in�nity (in the imaginarydirection) under iteration of f . The largest component inside U 0 corresponds to the �lledJulia set of the polynomial-like map. Since the critical point �� is �xed under f , the �lledJulia set is homeomorphic to that of Q0(z) = z2.
Figure 7: The largest white component in U 0 corresponds to the �lled Julia set of f(z) = � cos zrestricted to the set U 0.Example D Consider again Qc0(z) = z+c0 where c0 w �1:75778+0:0137961. As explainedin Sect. 2, Q3c0 maps the square box U 0 centered at 0 and with side length 0:4 onto a largerset U containing U 0 (see Fig. 4). By the Straightening Theorem, Q3c0 is hybrid equivalent to



N�uria Fagella 57Qc for some value of c. One can check that the critical point is periodic of period three underiteration of Q3c0 , hence there are a limited number of posibilities for c. In this case the �lledJulia set of the polynomial-like map is homeomorphic to the Douady rabbit (see Figs. 8, 9).
Figure 8: The �lled Julia set of Qc0, where c0 w �1:76 + 0:01i.

Figure 9: Left: the Douady rabbit or the �lled Julia set of Qc1(z) = z2 � c1 in white, wherec1 w �0:122+0:745i. Right: magni�cation of the �lled Julia set of Qc0 around the critical point. Thecopy of the Douady rabbit is the �lled Julia set of the polynomial-like map corresponding to Q3c0 .3. Parameter PlaneAs usual, the phenomena in dynamical plane are re
ected in parameter space. Recall thatthe parameter space of the family of quadratic polynomials Qc(z) = z2 + c contains theMandelbrot set de�ned as M = fc 2 C j fQnc (0)gn�0 is bounded gor, equivalently, the set of c values for which the �lled Julia set of Qc is connected (seeFig. 10).
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Figure 10: The Mandelbrot setIf we look at the parameter space for other functions, we very often encounter portions thatresemble the Mandelbrot set. This fact is again explained by the theory of polynomial-likemaps. Since the Mandelbrot set appears when we consider families of quadratic polynomials,it is reasonable to expect that it should also appear when we consider families of polynomial-like maps of degree two, as long as these families are \nice" enough.Remark 3 For the sake of exposition, we consider here only one parameter families ofpolynomial-like mappings of degree two. For other cases see [DH3].3.1. Analytic families of polynomial-like mappingsDe�nition Let � be a Riemann surface and F = ff� : U 0� ! U�g be a family of polynomial-like mappings. Set U = f(�; z) j z 2 U�gU 0 = f(�; z) j z 2 U 0�gf(�; z) = (�; f�(z))Then, F is an analytic family of polynomial-like maps if it satis�es the following properties:1. U and U 0 are homeomorphic over � to �� D2. The projection from the closure of U 0 in U to � is proper3. The map f : U 0 ! U is holomorphic and properIf these properties are satis�ed, the degree of the maps is constant and it is called thedegree of F . We denote K� = Kf� and J� = Jf� . By the Straightening Theorem, for each �the map f� is hybrid equivalent to a polynomial of degree the degree of F . By analogy withpolynomials, we de�ne MF = f� 2 � j K� is connected g:In the next section, we give some conditions under which the setMF is homeomorphic to theMandelbrot set.



N�uria Fagella 593.2. Homeomorphic Copies of the Mandelbrot SetLet F be an analytic family of polynomial-like maps of degree two. Then, for each � 2MF ,f� is hybrid equivalent to a unique polynomial of the form Qc(z) = z2 + c. Hence the mapC : MF �! M� 7�! c = C(�)is well de�ned.Theorem 4 Let A 2 � be a closed set of parameters homeomorphic to a disc and containingMF . Let !� be the critical point of f� and suppose that for each � 2 � nA, the critical valuef�(!�) 2 U� nU�0. Assume also that as � goes once around @A, the vector f�(!�)�!� turnsonce around 0 (see Fig. 11). Then, the map C is a homeomorphism and it is analytic in theinterior of MF .
Figure 11: Illustration of theorem 4.Remarks 51. The assumption \f�(!�) 2 U� n U�0 if � 2 � nA" is equivalent to MF being compact.2. If the winding number of f�(!�)� !� around 0 is � > 1, then C is a branched coveringof degree �.Example A The purpose of this example is to illustrate that the conditions of the theoremare satis�ed for the Mandelbrot set itself. Consider the parameter plane for the quadraticfamily and let � = fc j GM(c) < 2�gA = fc j GM(c) � �gwhere GM denotes the Green's function of the Mandelbrot set. Given the way the Green'sfunction of M is de�ned, if c 2 @A then c lies on an equipotential curve of potential � inthe dynamical plane as well. So, for each c 2 @A, let �0c and �c be the equipotential curvesin the dynamical plane of Qc of potentials � and 2� respectively. The open sets enclosed by�0c and �c are the discs U 0c and Uc respectively and F = (QcjU 0c ; U 0c; Uc) the analytic familyof polynomial-like maps. Note that, by construction, for each c 2 � n A, the critical valueQc(0) = c lies in Uc n U 0c. Also, as c turns once around @A, the critical value c turns oncearound the critical point 0. In this case MF =M .



60 N�uria FagellaExample B Consider the family of cubic polynomials P (z) = Pa;b(z) = z3+az+b. For anygiven constants � and � we de�ne the parameter space �� = ��;� to be the set of polynomialsP such that:� one critical point !1 escapes to in�nity with escape rate �� another critical point !2 escapes to in�nity at a slower rate or stays bounded� the co-critical point !01 of !1 that is, the other preimage of P (!1) di�erent from !1,belongs to the external ray R(�) (see [Br3] for de�nitions of this terms and [Br2] formore in this example).Note that polynomials of this type are polynomial-like maps of degree two, as shown inexample B in Sect. 2. In [BH] Branner and Hubbard prove:Theorem 6 The parameter space �� is homeomorphic to a disc.Hence, polynomials in �� form a one-parameter family of polynomial-like maps of degree two.Let B� = B�;� be the set of polynomials in �� for which the orbit of !2 is bounded. Notethat examples B.1 and B.2 are in B� for some values of � and �. Also in [BH] we �nd thefollowing theorem:Theorem 7 Let � 2 B� and suppose that the connected component of c2 in K(P�) is periodic.Then, the connected component of � in B� is a homeomorphic copy of the Mandelbrot set.Figure 12 shows the parameter space �0 with B0 in black.
Figure 12: The set B0 � �0 shown in black, with countably many components which are homeomor-phic copies of the Mandelbrot set.Example C Let f�(z) = � cos(z) and let A be an appropriately chosen disc in the �-plane around � = �. One can check that for appropriate choices of U 0� and U�, the maps(f�jU 0� ; U 0�; U�) form an analytic family of polynomial-like maps. As � turns once around @A,the critical point stays �xed at �� while the critical value �� winds once around �� hence
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Figure 13: Left: Parameter plane of f�(z) = � cos z. Right: magni�cation of the copy of theMandelbrot set centered around � = �.satisfying the conditions of theorem 4. In Fig. 13 we see the resulting copy of the Mandelbrotset, with � = � as the center of its main cardioid.Example DLet A � � be a small discs of parameters centered at c w �1:755 and with c0 containedin A where c0 is as in example D in Sect. 2. For Qc� , the critical point is periodic of periodthree. One can check that for apropiate choices of �, Uc, U 0c and A, the conditions of thetheorem are satis�ed for the family F = fQ3c : U 0c ! Ucgc2�. Figure 14 shows the Mandelbrotset and a magni�cation of the homeomorphic copy that contains c0.
Figure 14: Copy of the Mandelbrot set in the parameter plane of Qc. Range:[�1:8;�1:72] �[�0:038; 0:038].
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Proc. of the 7th EWMmeeting, Madrid, 1995Local properties of the Mandelbrot set MSimilarities between M and Julia setsTan LeiUniversity of Warwick, Englandtanlei@maths.warwick.ac.uk1. IntroductionLocal properties of the Mandelbrot set around a point c0, such as self similarity, Hausdor�dimension, local connectivity, are closely related to properties of the �lled Julia set Kc for cin a neighborhood of c0. Recall that M = fc 2 C j 0 2 Kcg. For each N � 0, let FN denotethe holomorphic mapping c 7! QNc (0), where Qc denotes the polynomial z 7! z2 + c. SinceKc is totally invariant, for any N 2 N, we haveM = fc 2 C j FN (c) 2 Kcg :It is often convenient to go to the product space (c; z) 2 C � C to study both M and Kc.We may regard c 7! Kc as a map and K = f(c; z) j c 2 C ; z 2 Kcg as its graph in C � C .Then M can be interpreted as Projc �graph(FN)\K� (1)where Projc denotes the projection mapping to the �rst coordinate (the c coordinate).Let c0 be a point of M , so FN (c0) 2 Kc0 . A typical way to relate Kc0 to the localstructure of M around c0 is to study the local structure of K around the point (c0; FN(c0))(which depends on the regularity of the mapping c 7! Kc at c0, see for example conditions* and *' below), and the slope of FN at c0 (i.e. the constant F 0N (c0)). In this paper weillustrate this technique by showing two related results.The �rst theorem states a similarity result between the dynamical plane and the param-eter plane around Misiurewicz points. This similarity can actually be observed in computerexperiments as in Figures 1, 2 and 3. We know that the set of such points form a dense subsetof @M , and for each Misiurewicz point c0, we have Jc0 = Kc0 (see B. Branner's paper).Denote by DH the Hausdor� distance on the space Comp�(C ) of non-empty compactsubsets of C . Let ��c denote the translation z 7! z � c. For any closed set A � C , de�neAr = (A \�(0; r))[ @�(0; r)where �(z; r) denotes the open disc centered at z and with radius r. For technical reasonsit is important to include the circle @�(0; r) when measuring the Hausdor� distance of twoclosed sets within the disc �(0; r). 63
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Figure 1: Enlargement of the Mandelbrot set around the Missurewicz point c0 � �0:77568377 +0:13646737i to be compared with Fig. 2.Let � be a complex number with j�j > 1. A closed set A � C is said to be �-self-similarabout x if ���x(A) = ��x(A); it is said to be asymptotically �-self-similar about x if there isa �-self-similar set L (about 0) so that the Hausdor� distance DH((�n��x(A))r; Lr) tends tozero as n tends to in�nity for some r > 0 (hence every r > 0). For an example of a self-similarset, see the appendix.Theorem 1 ([T1]): For every Misiurewicz point c0, there are two constants � 2 C ; j�j > 1and � 2 C � f0g, and a closed �-self-similar set L � C such that for any r > 0a) DH((�n��c0(Kc0))r; Lr)! 0 as n!1, i.e. Kc0 is asymptotically �-self-similar about c0.Moreover, for c in a neighborhood of c0, we have DH((�(c)n���(c)(Kc))r; L(c)r) ! 0,where c 7! �(c) and c 7! �(c) are holomorphic, and c 7! L(c) is a map verifying thecondition * below.b) DH((�n��c0(M))r; (�L)r)! 0, i.e. M is also asymptotically �-self-similar about c0.c) limt2C ;jtj!1DH((t� � ��c0(Kc0))r; (t��c0(M))r) = 0. Hence up to multiplication by � thesets Kc0 and M are asymptotically similar about c0.(We will give the precise form of �, L and � later in the formulas (2) , (6) ).Part c) is an easy consequence of a) and b). As an application of this result, one can showthat M is locally connected at each Misiurewicz point (see the appendix).
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Figure 2: The Julia set of the Missurewicz polynomial z 7! z2 + c0, where c0 is as in Fig. 1.

Figure 3: Enlargment of Fig. 2 around the point c0.



66 Tan LeiThe second result can be considered as a quantitative study of the similarity between Juliasets and the Mandelbrot set. It gives estimates for the Hausdor� dimension of these sets.The exact de�nition of the Hausdor� dimension is not so important for the purpose of thispaper. It can be found in the appendix. We only state two basic properties of it: For anycompact set K of C , we have H-dim(K) 2 [0; 2], and for any compact subset K0 � K, wehave H-dim(K0) � H-dim(K). One should consider that the Hausdor� dimension measuresa kind of density or complexity of a set. So if K � C is a compact set without interior, butwith H-dim(K) = 2, then K must be very complicated.Theorem 2 (Shishikura): For each " > 0, there is a dense subset of @M satisfying that forevery point c0 in this set, there is a closed set X � @Kc0 and a constant r0 > 0 such thata') H-dim(@Kc0) � H-dim(X) > 2 � ". Moreover for c 2 �(c0; r0), we have similarlyH-dim(X(c)) > 2 � ", where X(c) is a subset of @Kc, and c 7! X(c) veri�es thecondition *' below.b') H-dim(@M \�(c0; r0)) > 2� " .Corollary. We have H-dim(@M) = 2.The existence of c0 and X satisfying a') involves deep analysis of parabolic perturbationsand renormalizations. We will give some ideas of it in the appendix. The set X is in facta hyperbolic set (see the appendix). It is this hyperbolicity that guarantees the stabilityproperty.We will sketch the proofs of a),b),b') in the following sections.Condition *. Consider a mapping c 7! A(c) with c 2 �(c0; r0), A(c) a closed subset of C ,such that c 7! A(c)r is continuous at c0, for every r > 0. The mapping admits a dense setof continuous sections at c0, if there exists a dense subset Z � A(c0) and, for each z 2 Z , aneighborhood Uz � �(c0; r0) of c0, and a mappings : f(c; z) j z 2 Z; c 2 Uzg ! Csuch that s(c0; �) = id and s(�; z) : Uz ! C is continuous with s(c; z) 2 A(c).Condition *'. Consider a mapping c 7! X(c), with c 2 �(c0; r0), X(c) a subset of C . Themapping admits a holomorphic motion if there is a mapping i : �(c0; r0) � X ! C , whereX = X(c0), such that i(c0; �) = id, i(c; �) : X ! C is injective with i(c;X) = X(c) andi(�; z) : �(c0; r0)! C is holomorphic for each z 2 X .2. Dynamical planes, Proof of a)First remark that asymptotic similarity is invariant under conformal transformations. Moreprecisely:Proposition 3 : Let U and V be neighborhoods of 0 and u : U ! V be an injective analyticmap satisfying u(0) = 0 and u0(0) 6= 0. Suppose A is a closed subset of U containing 0, andsuppose u(A) is asymptotically �-self-similar for some � 2 C with j�j > 1, i.e. for any r > 0,DH((�nu(A))r; Lr)! 0 as n!1



Tan Lei 67where L is a closed �-self-similar set. Then A is asymptotically �-self-similar to (1=u0(0))L,i.e. for any r > 0, DH �(�nA)r;� 1u0(0)L�r �! 0 :Now assume that c0 is a Misiurewicz point. If there is no ambiguity, we simplify thenotation by setting Qc0 = Q and Kc0 = K. By de�nition, there is a smallest number k suchthat � = Qk(c0) is a periodic point. Let � = (Qp)0(�) denote the multiplier.It follows from classical results of Fatou and Julia that the point � is repelling, i.e. j�j > 1.Let ' : U ! �(0; r) denote linearizing coordinates in a neighborhood U of �, hence satisfying'(�) = 0, '0(�) = 1 and ' �Qp � '�1(z) = �z for all z 2 �(0; r=j�j), for some r > 0.Since K is totally invariant (Q(K) = Q�1(K) = K) and ' is a linearizing coordinate wehave (�'(K \ U))r = ('(K \ U))r :Applying proposition 3 to (u;A) = (';K \ U) we getDH((�n���(K))r0; ('(K \ U))r0)! 0for any 0 < r0 < r.Since (Qk)0(c0) 6= 0 , there exists a neighborhood V of c0 and r00 > 0 such that ' � Qk :V ! �(0; r00) is a homeomorphism. Applying proposition 3 to (u;A) = (' � Qk; K \ V ) weobtain DH �(�n��c0(K))r00 ;� 1(Qk)0(c0)'(K \ U)�r00�! 0 :This proves the �rst assertion of a). Note that � is the multiplier of the periodic point � andthat the �-self-similar limit set L is determined (locally) by1(Qk)0(c0)' �Qk(K \ V ) (2)where V is any neighborhood of c0 which is mapped homeomorphically onto its image under' �Qk.Example. Let us take the example of c0 = i . For Qi : z 7! z2 + i , the orbit of i is :i 7! i � 1 7! �i 7! i � 1. In our notation, k = 1; p = 2; � = i � 1 and � = (Q2i )0(i � 1) =4(1 + i) = 4p2e�i=4.Remark. Note that a) could have been stated in greater generality. The statement is true forany repelling periodic point � with multiplier � and linearizing coordinates ', and similarlyfor any pre-periodic repelling point. We have only chosen the special pre-periodic point c0in order to be able to compare with the parameter plane. These are the only properties wehave used, together with the invariance of K.The second assertion of a) is a consequence of a stability result. As before let c0 be aMisiurewicz point and let k; p; �; � be as above for the map Qc0 .As an application of the implicit function theorem, (pre-)repelling periodic points are\stable" with respect to the parameter. That is for any c in a neighborhood W of c0, thepolynomial Qc : z 7! z2 + c has a p-periodic point �(c), depending analytically on c, withmultiplier �(c), and with a k-th pre-image �(c) of �(c), both depending analytically on c,satisfying �(c0) = c0 ; �(c0) = � ; �(c0) = � and (Qkc )0(�(c)) 6= 0 :



68 Tan LeiLet 'c denote the linearization coordinate around �(c). The same proof as above showsthat there is a neighborhood V�(c) of �(c) which is mapped by 'c � Qkc comformally onto itsimage, and that Kc is asymptotically �(c)-self-similar about �(c) to the limit set (locally)L(c) = 1(Qkc )0(z)jz=�(c)'c �Qkc (Kc \ V �(c)) : (3)As for the condition *: the mapping c 7! L(c) is continuous at c0 because c 7! Kc iscontinuous at c0 (Douady-Hubbard, see B. Branner's paper); each repelling periodic pointhas a continuous section, and the set of repelling points is dense in Jc0 = Kc0 .3. Parameter plane, Proofs of b),b')The proof of b) is done in two steps, one consists of a general result, one is the adaptation.Proposition 4 Suppose � is a neighborhood of �0 in C . Assume we have a mapping � 7!A(�) satisfying the condition * at �0, and that A(�) is �(�)-self-similar about 0, where � 7!�(�) is holomorphic with j�(�0)j > 1. Assume u : � ! C is a holomorphic mapping, withu(�0) = 0, and u0(�0) 6= 0 (transversality). SetMu = f� 2 �ju(�) 2 A(�)g (4)ThenMu is asymptotically �(�0)-self-similar about �0 to the �(�0)- self-similar set A(�0)=u0(�0).Proof. (sketch) Assume �0 = 0. For z 2 C a point and K � C a compact set, we use d(z;K)to denote the euclidean distance from z to K, i.e. d(z;K) = minz02K jz � z0j.To �x our ideas we treat �rst two simple cases. Assume that � 7! A(�) is a constant map(i.e. A(�) � A(�0)) and u(z) = u0(0)z is linear. Then obviously Mu is �0-self-similar about0, to the set A(0)=u0(0). Assume now that � 7! A(�) is still constant but u(z) is no longerlinear. Then Mu coincides with u�1(A(0)) and the conclusion holds by Proposition 3.Now let us come back to the setting of our proposition. Set �(0) = �, u0(0) = u0 andA(0) = A. Choose r > 0 su�ciently small. We must prove that DH((�nu0Mu)r; Ar) ! 0as n ! 1. Recall that by de�nition DH(A;B) = max(�(A;B); �(B;A)) (see B. Branner'spaper).First we prove �((�nu0Mu)r; Ar)! 0. Let� 2Mu \�(0; r�nu0 )so that �nu0� 2 �(0; r) and j�j � j�j�n.d(�nu0�;Ar) � j�nu0�� �nu(�)j+ j�nu(�)� �(�)nu(�)j+ d(�(�)nu(�); Ar) = I1 + I2 + I3 :We have I1 � j�jnj�j2 � j�jnj�j�2n ! 0, andI2 = j�n � �(�)nj � ju(�)j � n�1Xi=0 j�jn�i�1j�(�)jij�� �(�)j � ju(�)j � nj�jn�1j�j2 ! 0 :I3 ! 0 because � 2 Mu so �(�)nu(�) 2 A(�) and j�(�)nu(�)j � j�nu0�j � r, moreover�(A(�)r; Ar)! 0 as �! 0.



Tan Lei 69To prove �(Ar; (�nu0Mu)r)! 0, we only need to show d(z; (�nu0Mu)r)! 0 for each z 2 Z,where Z is the dense set in Ar where we have continuous sections s(�; z) (see condition *).Let z 2 Z. By Rouch�e's theorem, for n large, there is a �n 2 Uz as a solution of the equations(�; z) = �(�)nu(�). Hence �n 2Mu and j�nj � Cju(�n)j � j�j�n. Moreoverj�(�n)nu(�n)j = js(�n; z)j � js(0; z)j= jzj � r :So d(z; (�nu0Mu)r) � jz � �nu0�nj � jz � s(�n; z)j+ j�(�n)nu(�n)� �nu0�nj = I4 + I5 :We have I5 ! 0 as above, and I4 ! 0 by the continuity of s(�; z), and the fact s(0; z) = z.Remark. This proposition is also true in a higher dimensional setting, and under a weakerhypothesis of di�erentiability for � and u. See [T1] for details.Let c0 be a Misiurewicz point. We now will adapt the situation just considered. Recallfrom the proof of the second part of a) that there exist a neighborhood W of c0 and aholomorphic mapping �(c) such that Kc is asymptotically �(c)-self-similar about the point�(c), to the �(c)-self-similar limit set L(c) (see (3) ). Shrinking W if necessary we havec 2 V�(c) whenever c 2 W . Hence the Mandelbrot set in the region W can be interpreted asM \W = fc 2W j c 2 Kcg = �c 2W ���� 1(Qkc )0(z)jz=�(c)'c �Qkc (c) 2 L(c)� : (5)To apply the above proposition, set � = W , �0 = c0, A(c) = L(c) andu(c) = 1(Qkc )0(z)jz=�(c)'c �Qkc (c) :We have proved in part a) that c 7! L(c) satis�es the condition * at c0, and L(c) is �(c)-self-similar about 0. Moreover c 7! �(c) is holomorphic, with j�(c0)j > 1. It is clear thatu(c) is also holomorphic. As a consequence of the connectedness ofM , Douady and Hubbardshowed that u0(c0) 6= 0. Set L(c0) = L. Now since M \W = Mu, Proposition 4 shows that,for any r > 0, DH �(�n��c0M)r; ( 1u0(c0)L)r�! 0 :Moreover, an elementary calculation (see [T1] for details) shows that the required � is1u0(c0) = (Qkc0)0(z)jz=c0ddc(Qkc (c))jc=c0 � ddc(�(c))jc=c0 : (6)This ends the proof of b).Example. Let us take again the example of c0 = i . To �nd the value of � , we �rst obtain(Qkc0)0(z)jz=c0 = (Qi)0(z)jz=i = 2i ,ddc(Qkc(c))jc=i = ddc(c2 + c)jc=i = (2c+ 1)jc=i = 2i+ 1 :The function �(c) is the solution near i � 1 of the implicit equation Q2c(z) = z, i.e. (z2 +c)2 + c� z = 0 for c close to i . Henceddc(�(c))jc=i = � 2((i� 1)2 + i) + 12((i� 1)2 + i) � 2(i� 1)� 1 = 2i� 14i+ 3 and � = 2i2i+ 1� 2i� 14i+ 3 = 1+ 12 i :



70 Tan LeiComputer experiments con�rm the similarity very impressively.The proof of b') is also done in two steps:Proposition 5 Assume that we have a holomorphic motion i : ��X ! C (where � denotesthe unit disc) and an analytic mapping v : �! C , with v(0) = z0 2 X, v(�) 6� i(�; z0) (weaktransversality). Set Mv = f� 2 � j v(�) 2 X(�)g. ThenH-dim(Mv) � limr!0H-dim(X \�(z0; r)) :Proof. (sketch) For simplicity, we assume v0(0) 6= 0. In the simple case that X(�) � X(0)for � 2 � we have Mv = v�1(X(0)). Since v is bi-Lipschitz near 0, and hence preservesthe Hausdor� dimension, we have H-dim(Mv) � H-dim(X \�(z0; r)) for some r > 0. As aconsequence H-dim(Mv) � limr!0H-dim(X \�(z0; r)) :Now let us come back to the setting of our proposition. We will apply Rouch�e's theoremto prove that, for r 2]0; r0[ (where r0 is a small constant) and Y r = v�1(X \�(z0; r)), thereis Rr > 1 (with Rr ! 1 as r ! 0) and a holomorphic motion: jr : fj�j < Rrg � Y r ! Csuch that jr(1; Y r) �Mv . ThereforeH-dim(Mv) � H-dim(jr(1; Y r)) � C(1=Rr)H-dim(Y r) = C(1=Rr)H-dim(X \�(z0; r)) ;where the existence of C(1=Rr) in the second inequality is due to a non trivial property ofholomorphic motions (see below). Furthermore C(1=Rr)! 1 as r! 0.(More precisely by Slodkowski's theorem (see for example [D1]), the mapping jr(1; �)extends to a K(1=Rr)-quasi-conformal mapping and K(1=Rr) ! 1 as 1=Rr ! 0. On theother hand, by Mori's inequality K-quasi-conformal maps are 1=K-bi-H�older continuous.Furthermore a simple calculation shows that for any 1=K-bi-H�older continuous map j andany set Y , we have (1=K) �H-dim(Y ) � H-dim(j(Y )) � K �H-dim(Y ) :Setting C(1=Rr) = 1=K(1=Rr), we get the desired inequality).To de�ne the constant Rr and the holomorphic motion jr, we proceed as follows: As-sume z0 = 0 and i(�; 0) � 0. Since the family of holomorphic maps fi(�; z)gz2X is nor-mal, and i(�; z) 6= 0 for any z 6= 0 and any � (by injectivity), any limit function ofthe family corresponding to a sequence zn ! 0 must be the constant function 0. Fixs < 1 and a > 0 such that in �(0; s), v(�) is injective and aj�j � jv(�)j. Then forbr = supfji(�; z)j j z 2 X \�(0; r); j�j � sg, we have br ! 0 as r! 0.Fix r0 such that as > br for 0 < r < r0 . Take r 2]0; r0[, set Rr = as=br. Take � 2 �(0; Rr)and z 2 X \�(0; r). The equation v(�)� i��(z) = 0 has a unique solution �(r; �; z) in thedisc �(0;minfs; s=j�jg) (we just apply Rouch�e's theorem here).Now set Y r = v�1(X \ �(0; r)) and de�ne jr : fj�j < Rrg � Y r ! C by jr(�; y) =�(r; �; v(y)). It is then easy to check that jr is a holomorphic motion and jr(1; Y r) �Mv.Now we should adapt the above result to the situation of the boundary @M of the Man-delbrot set. It is much less trivial than the similarity case because we wantMv to be a subsetof @M .



Tan Lei 71Lemma 6 For the holomorphic motion in part a'), there are z0 2 X, c0 2 �0 � �, with �0a neighborhood of c0, and v(c) = QNc (0) for some N > 0 with v(c0) = ic0(z0), v(c) 6� ic(z0)such that fc 2 �0 j v(c) 2 X(c)g � @M \�0, and limr!0H-dim (Xc0 \�(ic0(z0); r)) > 2� ".Proof. (sketch). By compactness of X , there exists a point z0 2 X such that H-dim(X) =limr!0H-dim(X \ �(0; r)) > 2 � ". Let i : �(c0; r0) � X ! C be the holomorphic motiongiven in part a'). Since for c close to c0 the mapping i(c; �) does not change too much theHausdor� dimension (see the proof of the above proposition), there is a small neighborhood�0 � �(c0; r0) of c0 such that limr!0H-dim (X(c)\�(i(c; z0); r)) > 2� " for c 2 �0.Recall that Fn denotes the map c 7! Qnc (0). The boundary of M coincides with the setf c 2 C j the family F = fFn ; n 2 N g is not normal at c g(see B. Branner's paper). By part a'), c0 2 @M . We claim that there is c0 2 �0, an integerN > 0, such that FN (c0) = i(c0; z0). For otherwise the family F would satisfy Montel'snormality criterion at c0 with respect to the two analytic functions c 7! i(c; z0) and onebranch of c 7! Q�1c (i(c; z0)), which contradicts the fact that F is not normal at c0.Set v(c) = FN (c). In order to apply the above proposition, we need to know that v(c) 6�i(c; z0) and the set Mv = fc 2 �0 j v(c) 2 X(c)g is a subset of @M .One thing that was not explicitly stated in part a') is that, besides the other propertiesin a'), we have also Qc0(X) = X , moreover the mapping i(c; �) conjugates the dynamics, i.e.i(c; Qc0(z)) = Qc(i(c; z)) : (7)As a consequence Qc(X(c)) = X(c) and X(c) � Jc.There are (at least) two ways to see that v(c) 6� i(c; z0): I. Since c0 2 @M , there isc00 2 �0 �M . So FN (c00) = QNc00(0) 62 Jc00 . But i(c00; z0) 2 X(c00) � Jc00 . II. We may also usethe normality argument. Assume FN (c) � i(c; z0) in �0. Then, for any integer k > 0,FN+k(c) = Qkc (FN(c)) � Qkc (i(c; z0)) = i(c; Qkc0(z0)) ;where the last equality is due to the formula (7) . So the family F is uniformly bounded in�0, hence normal. This contradicts the fact that F is not normal at c0.To prove Mv � @M we need Ma~n�e-Sad-Sullivan's characterization of @M : We say thatQc is J-stable at c1 if there is a continuous map h : �(c1; r)� Jc1 ! C such that hc � h(c; �)is a conjugacy from (Jc1 ; Qc1) to (Jc; Qc) and hc1 = Id. Then@M = fc1 2 C j Qc is NOT J-stable at c1 g :(This formula can be used to get another way to prove v(c) 6� i(c; z0), for otherwise onecan pull back the formula (7) to get a holomorphic motion of SnQ�nc0 (v(c0)). Since this isa dense subset of Jc0 , we can apply the �-lemma of Ma~n�e-Sad-Sullivan to show that Qc isJ-stable at c0, thus a contradiction.)Now assume that c1 is a point inMv�@M . So Qc is J-stable at c1, and admits a conjugacymap h : �(c1; r)� Jc1 ! C . Decreasing r if necessary, we may assume �(c1; r) � �0. SetX1 = i(c1; X). We claim that hj�(c1;r)�X1 must coincide with the holomorphic motion i.The reason is that both maps are continuous and h(c; z) = i(c; z) for z any repelling periodicpoint, and repelling periodic points are dense in X1 (this is because X1 is a hyperbolic subset).



72 Tan LeiOn the other hand, h must preserve the critical point, i.e. h(c; 0) = 0. So h(c; v(c1)) = v(c).This gives rise to a contradiction since v(c1) = i(c1; z0) but v(c) 6� i(c; z0).Hence all the conditions required by the above proposition are satis�ed. SoH-dim(@M) � H-dim(Mv) � limr!0H-dim �X(c0) \�(i(c0; z0); r)� > 2� " :This completes the proof of b').4. Appendix1. An example of a self-similar set. Let A � [0; 1] denote the standard middle third Cantorset. Take all logarithmic spirals through points in A which in logarithmic coordinates arestraight lines parallel to the vector log 3 + 2�i. This set is �-self-similar for � = 3te2�it forany t 2 R+.2. Local connectivity. For c0 a Misiurewicz point, [T2] constructed a sequence of Jordancurves �n in the dynamical plane such that A = fc0g[Sn �n is asymptotically �-self-similarand the set of bounded components Un of C � �n forms a basis of nested neighborhoods ofc0 with Un \Kc0 connected. Moreover there is a holomorphic motion i : �(c0; r0)� A! Cwith A(c) asymptotically �(c)-self-similar. As n ! 1, the sequence of subsets P�n = fc 2�(c0; r0) j c 2 �n(c)g bounds a nested sequence of neighborhoods Wn of c0 in the parameterplane, with W n \ M connected. Applying Proposition 4 to P�n, we see that it is alsoasymptotically �-self-similar. In particular the diameters of Wn shrink to zero exponentiallyfast. This is a stronger statement than saying that M is locally connected at c0.3. Hausdor� dimension: Let (E; d) be a metric space. For A � E, denote by jAj its diameter.For X � E, t > 0, " > 0, we de�nem"t(X) = inffAjg 8<:Xj2N jAj jt ������ 0 < jAjj � "; X � [j2NAj9=; :Fixing t, m"t(X) increases as " decreases. We can then de�ne mt(X) = lim"!0m"t(X) =sup">0m"t(X). Note that mt(X) can be 1. An easy calculation shows that if for some t,mt(X) < 1, then mT (X) = 0 for any T > t. As a consequence, there is a unique number� 2 [0;1] such that mt(X) = 1 for t < � and mt(X) = 0 for t > �. This � is called theHausdor� dimension of X .It is not easy to calculate the Hausdor� dimension in general. However, in the followingsituation there is an easy lower bound: Let G : V ! U be an analytic covering, with U anopen disc, V a �nite union of open discs with disjoint closures and V � U . Then for thenon-escaping set X = fz 2 V j Gm(z) 2 V for all m > 0g, one has:H-dim(X) � log(number of components of V )log(max jG0(z)j) :The set X is a special example of hyperbolic sets and is automatically stable under pertur-bation.4. Proof of theorem 1.2.a'). As an example, we give the main steps to show that there arecn ! c = 1=4, cn 2 @M and hyperbolic subsets Xn � @Kcn such that H-dim(Xn) ! 2 asn!1. The technique is called geometric limits of a parabolic map, and parabolic implosion.



Tan Lei 73A similar study can be done for each c in a dense subset of @M (namely the set of roots ofprimitive hyperbolic components).Denote by f the map z 7! z2+1=4. There will be two holomorphic functions g and h (the�rst and a second geometric limit of f) generating the family of mapsL = ffkglhm j k; l;m 2Z; m > 0g(with a certain convention on f�1 and g�1) satisfying the following two properties:4.1. There exists a sequence cn ! 1=4 (with cn 2 @M , but one can also choose cn in themain cardioid or cn 2 C �M) such that for each Gi 2 L, there are integers j(n; i) ! +1such that Qj(n;i)cn converges to Gi uniformly on compact sets in the domain of de�nition ofGi.4.2. There exists a small neighborhood U of 1=2 and constants a; C; C0 > 0 such that forlarge � > 0, there are open sets U1; � � � ; UN , with N > a�2, U i \U j = ;, Ui � U , and Gi 2 Lsuch that GijUi : U i ! U is bijective and C�(log �)2 < jG0ijUi j < C 0�(log �)2.As a consequnce, for n large, i = 1; � � � ; N , there is j(n; i) large and U(n; i) close to Uisuch that Qj(n;i)cn maps U(n; i) bijectively onto U with derivative close that of Gi. For X(n)the non-escaping set, the formula in Appendix 3 gives us:H-dim(X(n)) � 2 log � + log alog � + 2 log log � + constant > 2� " :We will skip the proof of 4.1 (which can be found in the papers of Shishikura and in [D2])and give a sketch of the construction of g; h; Ui; U;Gi and the estimate of jG0ij.a) Denote by B the basin of the parabolic point 1=2 for f . By classical results thereare holomorphic surjective maps '1 : C ! C , w 7! z and �1 : B ! C , z 7! w such thatf � '1 = '1 � T and �1 � f = T � �1, where T denotes the translation w 7! w + 1 (themappings '1;�1 are called Fatou coordinate changes of f). Set g = g1 = '1 � �1 : B ! C ;~g1 = �1�'1 : '�11 B ! C and g1 = ��~g1���1 : �('�11 (B))! C � (where �(w) = e2�iw). Thenthere exist choices (unique up to addition of integers) of '1;�1 such that ~g1(w) = w + o(1)as Im(w) ! +1 and g1(0) = 0, g01(0) = g001(0) = 1. For this g1, we have g1(1) = 1 andjg01(1)j > 1.b) Because B is simply connected and contains only one critical value, the immediatebasin B0 of 0 for the map g1 has the same property. Similarly one can �nd '2;�2 (but with'2(C ) = C � instead) and de�ne g2; ~g2; g2 with the same asymptotic behavior at 0 and 1.There are lifts of g2 by ��1 and '1 � ��1 successively. We call them ~h and h.c) Here is the diagram of our construction:Ui '1 � ��10 � '2 � WiGi # ~s # s # # T li~gmi2U '1 � ��1 � '2 � Wwhere ~s = T k~gli1 ~hmi and s = gli1 gmi2 . The other terms are going to be de�ned below.Fix U a small disc neighborhood of 1=2. There is a disc W and a choice of ��1 such that'1 � ��1 � '2 maps W onto U bijectively with bounded derivative.Since1 is repelling for g2, the map ~g2 behaves like a translation w 7! w+� with Im(�) > 0as Im(w) ! �1. So for m 2 N there are W 0m disjoint discs such that ~g2W 0m = W 0m�1,



74 Tan LeiIm(W 0m) ! �1 as m ! 1 and ~gm2 : W 0m ! W is a bijection with bounded derivative(independent of m).Fix � > 0 large. In the rectangle R(�) = fw; j<wj < � ; Im(w) 2 [��;�2�]g, there are Ndisjoint discs W1; � � � ;WN , with N > a�2, and li; mi 2 Z, mi > 0 such that T liW i = W 0mi .Therefore for each i the map T li~gmi2 : W i ! W is a bijection with bounded derivative(independent of i and �).Let ��10 : C � �R+ ! fwj0 < <w < 1g be the special branch of ��1. Set Ui = '1 � ��10 �'2(Wi).One can easily check that for � large and a good choice of ~h, we have U i � U and thereis k 2Z(independent of i and �) such that fkglihmiU i = U . Set Gi = fkglihmi jUi .d) The derivative jG0ij is controlled by 1=j('1���10 �'2)0(w)j, w 2 W i � R(�), the rest hasbounded e�ects. On the other hand, when � is large, both '1 and '2 can be approximatedby I(w) = �1=w. A simple calculation shows that jG0ij � �(log �)2.Some key words: dynamical spaces, parameter space, product space, implicit function theorem,Rouch�e's theorem, holomorphic motion.References[D1] A. Douady, Prolongement de mouvements holomorphes [d'apr�es Slodkowski et autres],S�eminaire Bourbaki, number 755, November 1993.[D2] A. Douady, Does a Julia set depend continuously on the polynomial? Proceedings ofSymposia in Applied Mathematics, Vol. 49, 1994[S1] M. Shishikura, The parabolic bifurcation of rational maps, 19� Col�oquio Brasileiro deMatem�atica, IMPA 1993.[S2] M. Shishikura, The Hausdor� dimension of the boundary of the Mandelbrot set and Juliasets, preprint SUNY Stony Brook, 1991/7.[S3] M. Shishikura, The boundary of the Mandelbrot set has Hausdor� dimension two, S.M.F.Ast�erisque 222, 1994[T1] Tan Lei, Similarity between Mandelbrot set and Julia sets, Commun. Math. Phys. 134,587-617, 1990.[T2] Tan Lei, Voisinages connexes des points de Misiurewicz, Ann. Inst. Fourier, Grenoble,42, 4, 707-735, 1992.UMR 128 CNRS, ENS Lyon, 46 all�ee d'Italie, 69364 Lyon 07, France.Department of Mathematics, University of Warwick, Coventry CV4 7AL, U.K.



Classi�cation in Algebraic GeometryA Short Course organized by Rosa M. Mir�o{Roig and Raquel MallavibarrenaThe session consisted of three talks organized with the aim of present to a non-specializedaudience some basic facts and main problems that belong to this relatively recent but vast�eld of Algebraic Geometry.The �rst talk was given by Margarida Mendes{Lopes and it was essentially an introduction,with basic concepts and de�nitions, all this with the goal of making the other two talksunderstandable.Mireille Martin{Deschamps spoke in the second place. She presented some aspects of theproblem of classi�cation of space curves: results, techniques,...The third talk was given by Emilia Mezzetti. She also focused on a classi�cation problem,the one for projective varieties of small codimension. Here, as well as in the previous talk,the use of sheaves, schemes and cohomology was proven to be a powerful tool. In fact, thesetechniques have made possible to talk of the so{called modern algebraic geometry.There was also a kind of example session where several computations were made concerningsome well - known problems that have an elementary treatment. Rosa Maria Mir�o{Roig





Proc. of the 7th EWMmeeting, Madrid, 1995On some notions in algebraic geometryMargarida Mendes LopesUniversidad de Lisboa, Portugalmmlopes@ptmat.lmc.fc.ul.ptForeword. This paper is an expanded version of the talk given to the 7th meeting of EWM.It was meant as a (very basic) introductory talk and does not propose to be a survey onsurface theory.1. Some notionsWe will be dealing with the projective space Pn over the complex numbers C . The projectivespace Pn is the set of 1-dimensional vector spaces of C n+1 and for each point p 2 Pn itshomogeneous coordinates (x0; :::; xn) are de�ned up to scalar multiple.Given an homogeneous polynomial f(x0; :::; xn) its locus of zeroes is a well-de�ned subsetof Pn, called an algebraic hypersurface.More generally a projective closed algebraic set V � Pn is the common locus of zeroes ofa �nite set of homogeneous polynomials, i.e. V = fx = (x0; :::; xn) : f1(x) = :::fk(x) = 0g.A closed algebraic set is a projective algebraic variety if V is irreducible (i.e. V cannot bewritten as the union of two proper subsets which are algebraic sets).Given an algebraic closed set we consider the ideal I(V ) formed by all homogeneouspolynomials which vanish identically on the points of V . This ideal is a �nitely generatedhomogeneous ideal and it will be a prime ideal if and only if V is irreducible.Associated to a variety V � Pn we have its dimension and its degree.There are various equivalent ways of de�ning the dimension, but possibly, since we aretalking about algebraic varieties over the complex numbers, the easiest way is de�ning thedimension of V as its dimension as a complex topological space. Other possible ways (whichare equivalent) are de�ning the dimension as d := n� r, where r is the maximum rank of thematrix ( @gi@xj ) evaluated over every point p 2 V , where gi are a set of generators for I(V ) orequivalently we can de�ne the dimension as the maximal m such that V projects surjectivelyto Pm.Now the degree can be again de�ned alternatively as the number of points of intersectionof V with a general linear subspace of complementar dimension, or then as the number ofpoints on a general �bre of a projection which realizes the dimension. For an hypersurfacethe degree is simply the degree of a polynomial generating I(V ) and the dimension is n � 1.A variety of dimension 1 is a curve, whilst one of dimension 2 is a surface. As simpleexamples one has for instance the cuspidal cubic curve in P2 de�ned by y2z � x3 = 0, the77



78 Margarida Mendes Lopestwisted cubic curve in P3 which is de�ned by the equationsx0x2 � x21 = 0; x0x3 � x1x2 = 0 and x1x3 � x22 = 0;or a complete intersection of two quadrics in P4.Let us point out that similarly to what happens with manifolds we can also give a notionof an abstract algebraic projective variety which does not depend on the ambient space we areconsidering and the dimension does not depend on the projective space we are considering.Of course the degree will not be invariant in this context. Anyway for our purposes it willbe enough to keep this de�nition as the locus of solutions of a �nite system of polynomialequations in mind.Given an algebraic variety we can de�ne a rational function on it as being a functionde�ned locally by a quotient of homogeneous polynomials of same degree. A rational mapbetween algebraic varieties V ! W � Pn is de�ned by v ! (1; f1(v); :::; fn(v)) where fiis a rational function on V . Now the main thing to remark is that a rational map is notnecessarily de�ned everywhere because there are points which are poles of every rationalfunction appearing. A morphism is a rational map everywhere de�ned and we will say that arational map is birational if it has an inverse which is a rational map. In this case basicallywhat happens is that the two varieties are the "same" in the complement of a closed algebraicset.We will be mainly concerned with smooth (also called non-singular) projective varietieswhich are those such that the rank of the matrix above is constant at every point. Althoughapparently we are missing out a lot that is not the case (at least up to birational equivalence)due to Hironaka's desingularization theorem, which says it is possible given a variety to �nda non-singular variety which is birational to it (by blowing-ups).2. What is classi�cation?There are various problems of classi�cation that arise. One is exactly classifying algebraicprojective varieties up to birational equivalence and �nding a way of describing all equivalenceclasses and this puts us into theory of moduli.Another is trying to �nd out which smooth varieties and of a given dimension live in somePn, and what degrees can turn up. Yet another is trying to classify according to the the"minimal" number of generators for its homogeneous ideal in Pn.It turns out that every smooth algebraic variety of dimension d can be isomorphicallyprojected in P2d+1. So for instance one possible problem of classi�cation is trying to �nd forgiven degrees which smooth varieties of dimension d are embedded (and with which degrees)in Pk where k � 2d.Suppose then we want to classify smooth varieties of a given dimension up to birationalequivalence. We would like to have a way of individuating in each birational equivalence classa representative. For curves it can be shown that each birational equivalence class containsa unique smooth curve. In the case of surfaces this is no longer true, but nevertheless we can�nd minimal smooth surfaces. A surface S is said to be minimal if any birational morphismof S ! S 0 , with S 0 another smooth surface, is an isomorphism. Given any smooth surfaceX it is always possible (by blowing down the exceptional curves) to �nd a smooth minimalsurface S together with a birational morphism X ! S. S is said to be a minimal modelof X . Now what happens for surfaces is that except for the surfaces in a certain class (i.e.



Margarida Mendes Lopes 79those with kod(X) = �1, see section 3) every birational equivalence class contains an uniqueminimal non-singular model and this helps a lot with the classi�cation.In this talk I'll focus precisely on the classi�cation of surfaces up to birational equivalence,more precisely on the usually called Enriques-Kodaira classi�cation. For this I will need :3. Some more notionsA divisor D on a smooth variety X is a formal �nite sum D =P aiCi where ai is an integerand Ci is any subvariety ofX of codimension 1. A divisor is e�ective if ai � 0 for every i. Theset of all divisors with the obvious operation is a group. To every non-zero rational functionf on X corresponds the divisor of f , (f) which is de�ned as being the di�erence (f)0� (f)1of the two e�ective divisors (f)0, (f)1 given respectively by the zeroes and the poles of f .Two divisors are linearly equivalent if their diference is the divisor of some rational function.If X is a smooth surface we can de�ne the intersection number of two divisors. Thisintersection number for two curves meeting tranversally at smooth points is exactly thenumber of points in which the curves meet.In the complex case it can be de�ned as an intersection number in homology. In fact eachdivisor D corresponds to a homology class in H2(X;Z). Given two divisors D1, D2 we cande�ne the intersection number D1 �D2 as being the intersection number of their homologyclasses. This intersection number can also be de�ned in purely algebraic terms.Given a divisor D on an algebraic variety one can associate to it a vector space L(D)consisting of 0 and the rational functions f such that div(f) + D is an e�ective divisor. Ifthis vector space is non-zero and n + 1 dimensional we can consider the map �D : X ! Pngiven by the functions of a basis of L(D).In particular one can speak about the pluricanonical maps of the variety X which areassociated to the multiples of the canonical divisors of X . What are those?The canonical divisors can be de�ned in purely algebraic terms but in this context, sincewe are considering varieties over the complex numbers, we are going to use the language ofcomplex manifolds.In fact any smooth algebraic variety over C is a compact complex manifold with theholomorphic structure inherited from Pn.Let us remark that the class of compact complex manifolds is bigger than the class ofsmooth algebraic varieties. A compact complex manifold which is also an algebraic varietyis said to be (projective) algebraic. Nevertheless one has: :Theorem 1 Every compact complex manifold of dimension 1 (Riemann surface) is algebraic.A compact complex manifold X of dimension 2 is algebraic if and only if a :=tr.degCM(X) =2, where M(X) is the �eld of meromorphic functions on X.If the compact complex manifold X is projective algebraic it turns out that any meromor-phic function is actually a rational function.Associated with each compact complex manifold of dimension n one has the canonical linebundle which is KX = ^nT _X , where T _X is the (holomorphic) cotangent bundle. So KX is theline bundle which holomorphic sections are the n-forms on X ,( for instance in the surface caselocally if z1; z2 are local coordinates local holomorphic sections are given by f(z1; z2)dz1^dz2where f(z1; z2) is an holomorphic function).



80 Margarida Mendes LopesHaving the canonical bundle we de�ne the pluricanonical bundles K
mX .The canonical (resp. pluricanonical) divisors on the smooth projective variety X arethen de�ned as the divisors obtained as the divisor of zeroes minus the divisor of poles of ameromorphic section of KX (resp. K
mX ). The canonical divisors are denoted by KX and thepluricanonical by mKX (omiting the subscript when there is no danger of confusion).This takes us to yet another de�nition: Kodaira dimension ofX , kod(X), as the maximumdimension of the image of �mK , for m 2 N. One has always kod(X) � dim (X), and ifkod(X) = dim X , X is said to be of general type. If L(mK) = 0, by convention dim�mK(X) = �1.The Kodaira dimension is a birational invariant and this gives us a very rough classi�cationof varieties with respect to birational equivalence which is done by dividing them in variousclasses according to the Kodaira dimension.The Kodaira dimension in fact can be de�ned for any compact complex manifold. In thecase of surfaces it turns out that if the compact complex surface X has kod(X) = 2, then itis an algebraic surface.4. The rough classi�cation of minimal surfacesFor surfaces one can describe the surfaces in some of these classes in more detail. To explainthis still rough classi�cation of we will need some more notions.A surface S is called elliptic if it admits an elliptic �bration, i.e. a morphism f onto asmooth curve B such that almost all �bres f�1(p) are smooth elliptic curves (i.e. Riemannsurfaces of genus 1).Associated with a surface we have various invariants. Some are linked to the canonicaldivisors :pg := dimCL(K) =number of linearly independent 2-forms (geometric genus);pi := dimCL(mK) (plurigenera)q := number of linearly independent 1-forms, called the irregularity;�(OS) := pg � q + 1;K2 (also denoted by c21):= the self intersection of a canonical divisor;c2:= topological Euler-Poincar�e characteristic.These invariants are linked by various relations of which maybe the most relevant is theNoether's formula: K2S + c2 = 12�(OS):Let us notice that all these invariants can be recovered from the topology of S. Also pg, pi andq (and �(OS)) are birational invariants whilst K2 and c2 are not. For birational equivalenceclasses C with a unique minimal model S one has that K2S is maximum for the surfaces in C.Let us notice also that in spite of not looking so via Hodge theory it can be shown thatall these invariants are in fact topological and computable from triangulations.Now we can give:The rough classi�cation of minimal algebraic surfaces (Enriques):



Margarida Mendes Lopes 81(I) Kodaira dim = �1: These are the surfaces for which pi = 0 for all i 2 N and are eitherP2 or ruled surfaces (i.e. a P1�bundle over a smooth curve) .(II) Kodaira dimension = 0 : These are the surfaces for which pi � 1 for all i 2 N and pi 6= 0for some i 2 N and are divided in the following di�erent classes:(a) bielliptic (sometimes called hyperelliptic) surfaces - admit a locally trivial �brationover an elliptic curve with elliptic �bre (pg = 0, q = 1)(b) K3 surfaces: These are the simply connected surfaces with KX = OX (pg = 1,q = 0).(c) Enriques surfaces: These are such that KX 6= OX and 2KX = OX (pg = 0, q = 0)and are quotients of K3 surfaces by a �xed point free involution.(d) Abelian surfaces: These are quotients of C 2 by some lattice (pg = 1, q = 2).(III) Kodaira dimension 1: These surfaces have pi � 1 for some i 2 N but the correspondingpluricanonical image is a curve and are all elliptic surfaces.(IV) Kodaira dimension 2: These are the surfaces for which some pluricanonical image is asurface and are called surfaces of general type.Examples of surfaces in (I) are the projective plane, any smooth surface of degree n � 1in Pn, any surface isomorphic to the product P1� C, with C a smooth curve.Let us notice that the surfaces with Kodaira dimension 2 form a much "bigger" class.For instance for the smooth surfaces in P3 which are hypersurfaces, hence de�ned by somepolynomial of degree d, one has that if d = 2; 3, S is birationally equivalent to P2, if d = 4 Sis a K3-surface, whilst if d � 5 S is of general type.Let us also remark that this classi�cation can be extended to compact complex surfaces,not necessarily algebraic. For details see [BPV] or [s-Pe].5. Surfaces of general type, geographical questions and pluri-canonical models\Most" surfaces will be of general type and one does not have a neat description like the onesfor Kod� 1. One has:Theorem 2 (Bombieri [B]) Let S be a minimal smooth surface of general type. Then form >> 0, �mK is a birational morphism and the images �mK(S) are all isomorphic. Fur-thermore �mK(S) is a surface having at most double points as singularities, and such that itsminimal desingularization is isomorphic to S.Corollary 3 Minimal surfaces of general type with given with given K2, c2 (or equivalentlygiven (K2, �(OS)) are surfaces of given degree in a given PN and therefore are parametrizedby a �nite union of irreducible algebraic varieties (i.e belong to a �nite number of families).By the Riemann-Roch theorem K2, �(OS) completely determine pi, i > 1 for minimalsurfaces of general type and hence we have this corollary, which Gieseker used to prove theexistence of a coarse moduli space for surfaces of general type:



82 Margarida Mendes LopesTheorem 4 (Gieseker) For each pair of integers such that 9x � y � 2x � 6 there exists acoarse moduli spaceMx;y for all the isomorphism classes of minimal surfaces of general typewith invariants K2 = y and �(OS) = x. Furthermore Mx;y is the union of a �nite numberof quasi-projective varieties (in particular it has a �nite number of connected components).Where do these relations appearing in Gieseker's theorem come from? For minimal surfacesof general type one has the following relations between the invariants:(i) K2 > 0, c2 > 0 (and �(OS) > 0).(ii) K2 + c2 = 12�(OS) (Noether's formula again).(iii) (M.Noether-Bombieri) K2 � 2�(OS)� 6 and if q > 0, K2 � 2�(OS).(iv) (Bogomolov-Miyaoka-Yau) K2 � 3c2 (equivalently K2 � 9�(OS)).Within these restrictions one type of question (known usually as a geographical question)is for what pairs of natural numbers (n;m) satisfying the above relations there are minimalsurfaces of general type with K2 = n, �(OS) = m.For what concerns geographical questions roughly the answer is for almost all pairs andthis is proved by constructing very special surfaces.The type of geographical results one has:Theorem 5 (chronologically Persson [P], Sommese [S], Chen [C1], [C2], Ashikaga [A]) Foreach pair of natural numbers (x; y) such that 9x � 347 � y � 2x � 6 or 8x � y � 2x � 6(with the possible exceptions of y = 8x� d; d = 1; 2; 3; 5; 7) there exists a minimal surface Sof general type such that K2S = x, �(OS) = y.Another type of questions are the so called botanical questions: given a pair of numbers(K2; �(OS)) (or equivalently (K2; c2) in the allowed region classify all minimal surfaces ofgeneral type with these invariants, describe families and if possible describe the moduli space.This last is almost impossible as follows from the followingTheorem 6 (Catanese [Ca1], [Ca2], [Ca3], Manetti [M] ) For all n 2 N there is a pair(K2; �(OS)) such that the moduli space has more than n irreducible components, pairwise ofdi�erent dimensions.Nevertheless in some cases one has descriptions of the moduli spaces, like the ones givenby Horikawa for surfaces with K2 � 2�(OS)� 6 � 2 (see [Ho]).There are a lot of other problems on surfaces I did not refer to, as the problems ofequivalence of di�erentiable stuctures on the topological manifold underlying an algebraicsurface or which of the above properties and classi�cation hold for surfaces de�ned over a�eld of characteristic p.
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Proc. of the 7th EWMmeeting, Madrid, 1995On classi�cation of algebraic space curves,liaison and modulesMireille Martin-Deschamps�Ecole Normale Sup�erieure, Paris, Francedeschamps@dmi.ens.fr1. Smooth space curvesIn the �rst paper on algebraic geometry, Margarida Mendes Lopes explained the structureof the projective space over the �eld C . A space curve is a closed algebraic subset C of theprojective 3-space P3, which has dimension 1 over C (note that it has dimension 2 over R).It is de�ned by homogenous polynomials (F1; : : : ; Fr) belonging to the ring of polynomials in4 variables S = C[X0; X1; X2; X3]. Since a single polynomial de�nes a surface (of dimension2 over C ), we have r � 2.The projective 3-space P3 is obtained by gluing together 4 a�ne spaces, so a space curveC can be covered by 4 a�ne pieces. If we want to study local properties of the curves, that isproperties in a neighbourood of a point, we can always restrict ourself to a point containedin an a�ne piece of the curve. For example, we say that a point P = (a0; a1; a2; a3) of Cis smooth (or that C is smooth at P ) if the tangent space to C at P has dimension 1. Toexpress it algebraically, we can suppose that a0 = 1 and work in the open subset X0 6= 0.Let fi(x1; x2; x3) = Fi(1; x1; x2; x3), for i = 1; : : : ; r. Then P is a smooth point of C if andonly if the rank of the matrix ( @fi@xj (P )) is 2.A curve is smooth if and only if it is smooth at every point.Examples : the curve de�ned by the polynomials (X1; X2) is smooth (it is a line), and thecurve de�ned by the polynomials (X0X21 �X32 ; X3) is not smooth (it has a cusp at the point(1; 0; 0; 0)).It is possible to show that a \general" plane intersects transversally the curve in d distinctpoints, where the number d, which doesn't depend on the plane, is called the degree of thecurve (a plane which is not general is a plane which is tangent).Now a question : why are we interested in space curves ? We can of course de�ne projectivecurves in Pn for n > 3, but one proves that, if C is a smooth curve contained in Pn for n > 3,there exists a projection � from Pn to an hyperplane Pn�1 such that the restriction of � to Cis an algebraic isomorphism from C onto its image. In other words, every smooth projectivecurve can be embedded in P3. On the other hand plane curves are in some sense special.85



86 Mireille Martin-DeschampsExample : let J be the ideal generated by the 2-minors of the matrix�X0 X1 X2X1 X2 X3�The 2 quadric surfaces de�ned respectively by X0X2�X21 and X1X3�X22 have a line (de�nedby (X1; X2)) in common. Their intersection is a curve of degree 4 (by Bezout theorem),therefore it is the union of the line and a curve C of degree 3, called a twisted cubic, whoseideal of zeroes is J . More generally, any curve projectively equivalent to C is called a twistedcubic. If one projects C to a plane, one gets a plane cubic curve with a singularity.2. Complete intersections. Liaison.We have seen that a space curve is de�ned by at least two homogenous polynomials. Fromthis point of view, the simplest case is therefore the case when the curve is de�ned by exactlytwo homogenous polynomials F and G (without common factor, since the dimension is 1).Such a curve is called a complete intersection (of two surfaces) (c.i. for short). Its degree issimply the product of the degrees of F and G. For example, plane curves of degree d are c.i.of a plane and a surface of degree d.Like plane curves, c.i. are in some sense special. The smooth curves of least degree whichare not c.i. are the twisted cubics. In fact, if the degree of a c.i. is a prime number, one ofthe two surfaces has degree 1, so is a plane. And we have seen that the twisted cubics arenot plane.Let again C be a twisted cubic. We have seen that it is contained in the intersection oftwo quadrics (which is a c.i.), and that the \residual" intersection is a line. We say that thecubic and the line are linked by the c.i.De�nition Two curves C and C0 without common component are linked (by a completeintersection X) if X is the union of C and C0.In fact, it is possible to enlarge this concept of liaison to curves having some commoncomponents, but I will not explain it here.Now this relation is re
exive and symmetric, but not transitive, it generates an equivalencerelation called liaison or linkage.De�nition Two curves C and C 0 are in the same liaison (resp. biliaison) class if and onlyif there exist an integer n and a sequence C0 = C;C1; : : : ; Cn = C 0, such that Ci and Ci+1are linked by some complete intersection (resp. and n is even).This concept has been introduced �rst by Apery ([A1], [A2]) and Gaeta ([G]), and devel-opped by Peskine and Szpiro ([PS]). It turns out that it is a very useful tool in the classi�cationof space curves. There are precise relations between the numerical invariants of the curves(degree, genus, dimension of the cohomology spaces) and we will see further that it is possibleto characterize the biliaison classes. But, even if a curve is smooth, a linked curve can be nonsmooth. So, even if one is interested in smooth curves, it is necessary to study more generallocally Cohen-Macaulay (l.C-M for short) curves. It is not necessary to give here a precisede�nition, but these curves have two important properties:{ i) the complete intersections are l.C-M,{ ii) if two curves C and C 0 are linked, C is l.C-M if and only if C 0 is l.C-M.Therefore it is the natural context for liaison problems.



Mireille Martin-Deschamps 873. Functions on smooth space curves. Hartshorne-Rao moduleLet f be a polynomial in 3 variables x1; x2; x3. It de�nes in a natural way a function fromthe open subset of C where X0 6= 0 to C . Morover, if f is one of the fi, or more generally,if f belongs to the ideal (f1; : : : ; fr) generated by the fi, the corresponding function is thezero function. So we obtain a map, which is a ring homomorphism, from the quotient ringA = C [x1 ; x2; x3]=(f1; : : : ; fr) to the ring of functions on C. One can prove that, if C issmooth, this map is injective. So A can be identi�ed with a subring of the ring of functionson C. Elements of A are called rational algebraic functions on C, de�ned where X0 6= 0.Suppose for simplicity that the plane \at in�nity" X0 = 0 intersects transversally thecurves in d distinct points P1; : : : ; Pd. If f is a non-zero element of A, we want to describethe corresponding function in a neighbourood of the Pi. For that purpose, we have the notionof \order" which is de�ned in the following way :Let f(X1X0 ; X2X0 ; X3X0 ) = F (X0; X1; X2; X3)=Xn0 , where F is an homogenous polynomial ofdegree n. It is the equation of a surface S, and we can de�ne the \multiplicity of intersection"m(C; S; Pi) of C and S at Pi (it is rather complicate, but it is 0 if S doesn't go through Pi, 1if C and S intersect transversally at Pi, and � 2 if S is tangent to C at Pi). Then the orderof f at Pi is the number ordPif = m(C; S; Pi)� n. If this order is positive (resp. negative),it means that f can be de�ned (resp. cannot be de�ned, we say that Pi is a pole of f) at Pi.With this de�nition, we see that ordPif � �n.Example : let C be the curve de�ned by the polynomials (X21 � X22 � X1X0; X3). Ithas 2 points at in�nity, P1 = (0; 1; 1), P2 = (0; 1;�1). Let f be the function de�ned by thepolynomial x1�x2+�. Then one has F = (X1�X2+�X0)=X0 and ordPif = m(C; S; Pi)�1.Since S doesn't go through P2, we have ordP2f = �1. If � 6= �1=2 (resp. � = �1=2), S istransversal (resp. tangent) to C at P1, so we have ordP1f = 0 (resp. ordP1f = +1). In anycase, P2 is a pole of f , but f is de�ned at P1.Linear systems on smooth space curves.Thanks to this notion of order, we can introduce a �ltration on the ring A by setting, forn 2 N, An = ff 2 A jf = 0 or ordPif � �n 8i = 1; : : :dg:This is a �nite dimensional vector space overC, which is called by the algebraic geometers,for reasons that I can't develop here, the space of sections of the line bundle OC(n). It ispossible to de�ne it in an intrinsic way.For example, for n = 0, we obtain the set of global functions on the curve (functionsde�ned everywhere).For every positive n, recall that Sn is the set of homogenous polynomials of degree n; thereexists a natural map of vector spaces �n : Sn ! An de�ned in the following way: if F 2 Sn isnon-zero, �n(F ) is the image of f = F (1; x1; x2; x3) in the quotient ring A (we have alreadyseen that if F 2 Sn, the order of f at Pi is � �n).



88 Mireille Martin-DeschampsMoreover, we can put in a natural way a structure of graded S-algebra on the direct sumAC = �n2NAn, so that the direct sum of all the �n gives an homomorphism �C of gradedS-algebra from S to AC . Of course this map is not injective (every Fi de�ning the curve goesto 0), but we will see now that it can also be not surjective. However,{ if n is >> 0, or if n is << 0, then �n is surjective,{ if C is a complete intersection (de�ned by two polynomials F and G), then �C issurjective (and AC = S=(F;G)).De�nition The Hartshorne-Rao module, or Rao-module, MC of a curve C is thecokernel of the map �C . It is a graded S-module of �nite length (because it has only a �nitenumber of non-zero homogenous components).This module, which was introduced by Hartshorne and studied by Rao has very niceproperties, and in some sense, it re
ects algebraic properties of the curve. Its non-zeroelements correspond to functions on the curve, which not come from functions de�ned on theprojective space.Example : let C be the curve de�ned by the polynomials (Y0X2; Y0X3; X1X2; X1X3), whereY0 is a linear form, independant of X1; X2; X3, and not a multiple of X0. It is the unionof the two lines, L (de�ned by (Y0; X1)) and L0 (de�ned by (X2; X3)) which don't intersect.There are two points at in�nity, P on L and P 0 on L0.Since the two lines are disjoint, one proves easily that the ring of rational algebraic func-tions on C (de�ned where X0 6= 0) is the product of the two corresponding rings of functionson L and L0. Therefore, AC is in a natural way, the product of AL = S=(Y0; X1) andAL0 = S=(X2; X3). The map �C : S ! S=(Y0; X1) � S=(X2; X3) is the product of the twonatural projections. Hence the Rao module MC is S=((Y0; X1; X2; X3). It has only one non-zero component, of dimension 1 and in degree zero., which correspond to the function takingthe value 1 on one of the lines and 0 on the other one (there are two such functions, but theirsum can be lifted on the projective space).More generally, if C is the disjoint union of two c.i. (F1; F2) and (F3; F4), one proves thatMC = S=(F1; F2; F3; F4).4. Liaison and Rao moduleThere are nice connexions between these two notions, and they are summarized in the fol-lowing results :1. Two curves C and C 0 are in the same biliaison class if and only if there exists h 2 Zsuch thatMC 'MC0(h) ([R]) (if M = �Mn is a graded S-module, M(h) is the gradedS-module de�ned by M(h)n = Mn+h , we say that the degrees are shifted by h to theleft).Example : the curves C with MC = 0 are in the same biliaison class (which containsall the c.i., but not only c.i., for example the twisted cubics).2. Let M be a graded S-module of �nite length. There exist a smooth curve C and aninteger h 2Zsuch that M 'MC(h) ([R]).Hence the Rao-modules (up to a shift) characterize the biliaison classes.



Mireille Martin-Deschamps 893. It is easy to prove, by an elementary geometric construction, that, starting from anexisting Rao module, every right shift can be obtained. But there exists a minimal leftshift ([Mi]). A corresponding curve is called a minimal curve in the biliaison class.4. One knows how to construct explicitely the minimal curves from the module associatedwith the biliaison class ([MD-P2]).5. One knows how to obtain the curves in the biliaison class from a minimal one ([BBM],[MD-P2]).So the classi�cation of these modules, which is an algebraic problem, will help us for theclassi�cation of space curves.References[A1] R. Ap�ery , Sur certains caract�eres num�riques d'un id�eal sans composant impropre,C.R. Acad. Sci. Paris, t. 220, p. 234{236, 1945.[A2] R. Ap�ery , Sur les courbes de premi�ere esp�ece de l'espace �a trois dimensions, C.R.Acad. Sci. Paris, t. 220, p. 271{272, 1945.[B] G. Bolondi, Irreducible families of curves with �xed cohomology, Arch. der Math.,53, 1989, 300{305.[BB] E. Ballico et G. Bolondi, The variety of module structures, Arch. der Math. 54,1990, 397{408.[BBM] E. Ballico, G. Bolondi et J. Migliore, The Lazarsfeld-Rao problem for liaison classesof two-codimensional subschemes of Pn, �a parâ�tre in Amer. J. of Maths.[BM1] G. Bolondi et J. Migliore, Classi�cation of maximal rank curves in the liaison classLn, Math. Ann., 277, 1987, 585{603.[BM2] G. Bolondi et J. Migliore, Buchsbaum Liaison classes, J. of Algebra, 123, 1989, 2,426{456.[Ein] L. Ein, Hilbert scheme of smooth space curves, Ann. Scient. E.N.S., 4e s�erie, 4,1986, 469{478.[E] G. Ellingsrud, Sur le sch�ema de Hilbert des vari�et�es de codimension 2 dans Pe �a cônede Cohen-Macaulay, Ann. Scient. E.N.S., 4e s�erie, 8, 1975, 423{432.[G] F. Gaeta, Quelques progr�es r�ecents dans la classi�cation des vari�et�es alg�ebriquesd'un espace projectif, Li�ege, C.B.R.M. 145{181, 1952.[GP1] L. Gruson et C. Peskine, Genre des courbes de l'espace projectif, Lecture Notes 687,Springer Verlag, 1977, 31{59.[GP2] L. Gruson et C. Peskine, Genre des courbes de l'espace projectif (II), Ann. Scient.E.N.S., 40e s�erie, 15, 1982, 401{418.[H] G. Halphen, M�emoire sur la classi�cation des courbes gauches alg�ebriques, Oeuvrescompl�etes, t.3, 261{455.
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Proc. of the 7th EWMmeeting, Madrid, 1995On classi�cation of projective varieties of smallcodimensionEmilia MezzettiUniversit�a di Trieste, Italymezzette@univ.trieste.it1. IntroductionThe subject of my paper is the \classi�cation of embedded varieties", especially in low codi-mension. To clarify the meaning to be given to this term, let me start with the followingtheorem, which is classical:Theorem 1 Let X be a smooth projective variety of dimension n over C . Then X can beisomorphically projected in P2n+1:Idea of proof: the projection centered at a point P is an isomorphism from X to its imageif and only if P does not belong to any secant or tangent line to X . The secant variety of X ,SecX , which is the union of all secant and tangent lines to X , has dimension at most 2n+1.So if X is a curve, \natural setting" is P3, for surfaces P5, and so on. In other words, in P3we �nd all curves, up to isomorphism. So to study the isomorphism classes of smooth curves(the moduli space) it is enough to study those of curves lying in P3. This was the subject ofthe paper by Mireille Martin-Descamps.If X may be embedded in a projective space of dimension < 2n+1, then X is in some sensespecial. For example: plane curves, surfaces in P3 and P4; : : : . We will try to understand inwhat sense X is special. Moreover there is the natural problem of the classi�cation of suchspecial varieties.Recently there has been new interest in this subject, due particularly to a conjecture(\Hartshorne's conjecture") and a theorem (by Ellingsrud { Peskine). Moreover new tech-niques (as for example adjunction theorems and computational methods) have led to consid-erable progress.2. Preliminary facts.The �rst important observation is that the varieties of dimension n lying in Pn+1 (i.e. of codi-mension 1) are precisely the hypersurfaces: they are sets of zeroes of a unique homogeneouspolynomial in n + 2 variables. Moreover, for any degree d, a general polynomial of degree dde�nes a smooth hypersurface.We may say that, in codimension one, \special" means: only one equation is needed.91



92 Emilia MezzettiWhen we take the intersection of two hypersurfaces, then we get a variety which is notnecessarily irreducible.A simple example in P3: take the irreducible quadrics of equationsx0x2 � x21 = 0; x0x3 � x1x2 = 0:The intersection contains the line x0 = x1 = 0; the other component is the skew cubic X ,given parametrically by: x0 = s3; x1 = s2t; x2 = st2; x3 = t3:So the two components are curves intersecting at the point (0 : 0 : 0 : 1). If we intersectfurther with the quadric x1x3 � x22 = 0;then the dimension does not decrease: we �nd precisely X .In general, we have the following:Theorem 2 Let X; Y � Pm have dimension r; s respectively. Let Z be an irreducible com-ponent of X \ Y . Then dim Z � r + s�m:In particular, if X1; X2; :::; Xr are hypersurfaces in Pm and Z is an irreducible componentof their intersection, then dim Z � m� r: Note that in the previous example the inequalitywas strict.Now we can de�ne the varieties complete intersection: X of dimension n in Pm is acomplete intersection (c.i. for short) if X is the transversal intersection ofm�n hypersurfaces,or, equivalently, the homogeneous ideal of X , I(X), is generated by m � n homogeneouspolynomials.It is possible to prove that a general c.i. variety is smooth. The canonical sheaf of a c.i.X of type r1; :::; rs in Pm is OX(r1 + ::: + rs � m � 1); this implies that, except for a fewparticular cases, the c.i. are varieties of general type.By Bezout's theorem, if X is a c.i. such thatI(X) =< F1; :::; Fr >; r = m� n;then the degree of X satis�esdegX = (degF1)(degF2):::(degFr).3. Hartshorne's conjecture (1974).It says the following [H]:Let X � Pm be a smooth variety of dimension n. If n > 2m3 , then X is a completeintersection.The assumption is that the codimension of X is \small enough" with respect to thedimension, i.e. codim X := m� n < n2 . So, in this range, to be \special" should mean to bea complete intersection.



Emilia Mezzetti 93The �rst signi�cant case is in P7 with codimension 2. It is easy to construct examples ofnon c.i. smooth varieties of small dimension. For example: any skew cubic curve in P3 is notc.i. by Bezout, because its degree is prime; any curve in P3 with Hartshorne { Rao modulenot 0 is not c.i.. Moreover, cones over non c.i. curves provide examples of singular non c.i.varieties in the range of the conjecture.Support to the Hartshorne's conjecture:{ lack of examples;{ a theorem of Barth ([B] 1970), which shows that, from a topological point of view,smooth varieties of small codimension are similar to complete intersections.Precisely, by the theorem of Lefschetz, if X is c.i. in Pm, then the restriction mapsH i(Pm; C ) ! H i(X; C)are isomorphisms for i � n� 1. The same over Z.Barth's theorem: if X is smooth, then the analogous restriction maps are isomorphismsfor i � 2n�m = n � (m� n). (The same over Zwas successively proven by Larsen [L]).Hence the more the codimension is small, the more the cohomology is similar to that ofcomplete intersections.Two classical examples show that the bound in the conjecture is sharp. We have thefollowing non c.i. varieties with 3n = 2m:(a) G(1; 4) � P9, of dimension 6, degree 5, non-degenerate (Bezout!);(b) the spinor variety S � P15, of dimension 10, parametrizing the 4�planes of a familyin a 8�dimensional quadric.No examples in P6;P12, etc. (Zak [Z]: these are the unique manifolds with 3n = 2m, nonc.i. and corresponding to orbits of linear algebraic groups).For codimension 2 varieties, the range of the Hartshorne's conjecture is from P7 on. Butthere are no examples already in P6.Another interpretation of the conjecture is as follows: From Barth{Larsen, it follows thatthe smooth varieties X of codimension 2 in Pn are subcanonical for n � 6, i.e. the canonicalbundle is !X = OX(k), for some integer k. By the Serre correspondence ([OSS]), eachsubcanonical X is the zero locus of a section of an algebraic vector bundle E of rank 2. Sucha X is c.i. if and only if E is decomposable: E = O(a)�O(b). So the Hartshorne's conjecturefor codimension 2 varieties becomes: \ if n � 7, then each algebraic vector bundle of rank 2 isof the form O(a)�O(b)". In fact, there are no examples of indecomposable rank two bundlesalready for n � 5.Some partial results about Hartshorne's conjecture:� for small degree: the non-necessarily smooth varieties of small degree are all classi�ed(Weil [X] for d = 3, Swinnerton-Dyer [SD] for d = 4, Ionescu [Io1],[Io2]) and manyothers for successive degrees);� concerning k�normality: by de�nition X is k�normal if the hypersurfaces of degree kcut on X a complete linear series; c.i. are k�normal for any k;� there exists a function N(d) of the degree, such that each non c.i. smooth X of degreed is contained in PN(d) ([H]). The best known estimates are:



94 Emilia Mezzetti- N(d) � 52d2 for any codimension (Barth-Van de Ven [BV]);- N(d) � pd for codimension 2 (Holme-Schneider [HS]);- N(d) � 2rd� d, for codimension r (Bertram-Ein-Lazarsfeld [BEL]).4. Varieties of codimension 2 in P4 and P5.We consider now varieties of small codimension but out of the range of Hartshorne's conjec-ture.Theorem 3 (Ellingsrud-Peskine [EP], 1989) There is a �nite number of families of smoothsurfaces of P4 not of general type.Here \family" means \irreducible component of the Hilbert scheme of surfaces of P4".Some word about the Hilbert scheme: if X is a projective variety in Pm and I(X) is itshomogeneous ideal, then the quotient ringS(X) := C [x0 ; :::; xm]I(X)is naturally graded and its homogeneous elements of degree d can be interpreted as hyper-surfaces of degree d not containing X . The Hilbert function of X is de�ned by: hX(t) =dimS(X)d as a C -vector space. There is a unique numerical polynomial PX(t), the Hilbertpolynomial of X , such that PX(t) = hX(t) for t >> 0, t integer. The coe�cients of PX haveimportant geometrical meaning: they give the dimension ofX , the degree, the Euler-Poincar�echaracteristic �, the sectional genus of X i.e. the genus of a curve intersection of X with ageneral linear space of the right dimension, etc.An important theorem of Grothendieck ([G]) says that: �xed any numerical polynomialP , the set of subschemes of Pm having P as Hilbert polynomial has a natural structure ofprojective scheme, enjoying a nice universal property.For example, for curves, �xing P means �xing degree and genus; for surfaces degree, �and sectional genus, etc.So in particular the theorem says that there is an upper bound d0 on the degree of non-general type surfaces lying in P4.Braun-Fl�ystad [BF](1993): d0 � 105. Then M. Cook ([C]) gave a better bound. But allknown examples have d � 15:Analogous result for 3�dimensional manifolds in P5 was proven by Braun-Ottaviani-Schneider-Schreyer ([BOSS] 1993). In this case there are examples up to degree 18:After the theorem of Ellingsrud - Peskine, the problem arises of giving a list of all families ofsurfaces of P4 not of general type; in particular rational and (birationally) ruled surfaces. Sim-ilar problem for 3�folds in P5: This has been made for small degrees (Okonek [O1], [O2],[O3],Ranestad [R], Aure-Ranestad [AR], Popescu [P] for surfaces, Beltrametti-Schneider-Sommese[BSS] for threefolds). I would like to mention two important methods:a) by the adjunction map. This is a classical method for studying algebraic surfaces,which goes back to Castelnuovo and Enriques. Given X , smooth connected variety of dimen-sion n, and a very ample divisor H on X corresponding to a line bundle L, one considers theadjoint linear system, i.e. j KX + (n� 1)H j, where KX is the canonical divisor.



Emilia Mezzetti 95Sommese-Van de Ven ([S] and [V],1979) have characterized the varieties X such that theadjoint linear system is not base-point-free, or, equivalently, the line bundle !X 
L
(n�1) isnot generated by global sections.They are: Pn with L = O(1), P2 with L = O(2) (i.e. the Veronese surface), smoothquadrics, scrolls over a smooth curve i.e. varieties X which are ruled by linear spaces ofdimension n� 1 over a smooth curve. For any other X , there exists the (regular) adjunctionmapping � := �jKX+(n�1)H j. The next step is the classi�cation of the varieties X such that�(X) has dimension < n (Fano varieties, quadric bundles, scrolls over a surface) or is notbirational (there are four examples). For the remaining varieties, � contracts exceptionaldivisors contained in X .For surfaces: by iteration of this procedure, one gets either a minimal model or a surfacefor which the adjunction map is not de�ned or not birational. For example, for rationalsurfaces of low degree in P4, one can explicitly �nd a linear system of plane curves de�ningit. For threefolds, it is necessary to study also the linear system j KX +H j and possibly itsmultiples.b) the computational method by Decker-Ein-Schreyer ([DES]). The ideal sheaf of acodimension 2 variety X in Pm has a locally free resolution of the form:O �! F �! G �! IX(k) �! 0for some integer k and locally free sheaves F ;G on Pm of ranks f; f + 1. The idea is: try toconstruct X starting from F and G. Taking the cohomology table of IX (assuming that Xexists), one looks for sheaves F and G with the \ right cohomology". Then one takes a map� : F ! G and checks (with a computer) if the degeneracy locus is smooth. By this method,it has been possible to re�nd all known examples of surfaces in P4 and threefolds in P5.5. Related problems.Study the geometry of varieties which are not general. For example, the Veronese surface inP4. It is a general projection of the Veronese surface V of P5, i.e. the plane embedded viathe complete linear system of the conics. This projection is isomorphic because Sec V is ahypersurface.(i) The theorem of Severi ([fS] 1901) says that all smooth surfaces of P4, except theVeronese surface, are linearly normal, i.e. they are not isomorphic projections of surfacescontained in spaces of higher dimension. In fact, if X � P5, X not the Veronese surface,then SecX = P5. The smooth 3�folds of P5 are all linearly normal (by a theorem of Zak[Z]). There is a unique example of a 3�fold X which is not 2�normal: this means that thequadrics of P5 don't cut a complete linear series on X . This example is called the Palatiniscroll; it is ruled by lines over a cubic surface of P3. Its ideal has a resolution as follows:(�) 0! O4P5 ! 
1P5(2)! IX(4)! 0so h1(IX(2)) = 1, h1(IX(k)) = 0 for k 6= 1.There is a strict analogy of X with the Veronese surface of P4 S because IS has a verysimilar resolution: 0! O3P4 ! 
1P4(2)! IS(3)! 0so h1(IS(1)) = 1.



96 Emilia MezzettiConjecture (Peskine, Van de Ven): X is the unique non 2�normal 3�fold of P5.(ii) A classical theorem of C. Segre ([cS] 1921) states that, if a smooth surface S of P4contains a 2�dimensional family of plane irreducible curves, then these curves are conics andS is a projection of the Veronese surface of P5, hence a Veronese surface of P4 or a cubicscroll. It is possible to prove ([M]) that if a smooth 3�fold X of P5 contains a family ofdimension 3 of plane curves, then either X is contained in a quadric or the degree of thesecurves is at most 3. Let us assume that X is not contained in a quadric: then ([MP] thereare only two 3�folds satisfying this assumption: the Palatini scroll again and the Bordigascroll: this last one may be obtained by an exact sequence like (*), by a particular bundlemap.(iii) A classical way for studying projective manifolds of dimension n is to study theirprojections into Pn+1. A theorem of Franchetta ([F] 1941) says that, if S � P4 is not theVeronese surface, then the double locus of its general projection in P3 is an irreducible curve.For 3�folds in P5, the general projection in P4 has always an irreducible surface as doublelocus. The triple locus is a curve and, if X is a Palatini scroll, then this curve is reducible:this is the unique known example.Work in progress of Mezzetti and Portelli is related to the points (i), (ii), (iii).ReferencesBasic books (here one can �nd the classical theorems quoted in this paper).P. Gri�ths - J. Harris, \Principles of Algebraic Geometry", J. Wiley & Sons, 1978;R. Hartshorne, \Algebraic Geometry", Springer, 1977;I. Shafarevich, \Basic Algebraic Geometry", Springer, 1974;Articles.[AR] A.B. Aure - K. Ranestad, The smooth surfaces of degree 9 in P4, London Math. Soc.LNS, 179 (1992), 32-46;[B] W. Barth, Transplanting cohomology classes in complex - projective space, Amer. J.Mat. 92 (1970), 951-967;[BV] W. Barth - A. Van de Ven, A decomposability criterion for algebraic 2�bun- dles,Invent. Math. 25 (1974), 91-106;[BSS] M. Beltrametti - M. Schneider - A. Sommese, Threefolds of degree 9 and 10 in P5,Math. Ann. 288 (1990), 413-444[BEL] A. Bertram - L. Ein - R. Lazarsfeld, Vanishing theorems, a theorem of Severi, and theequations de�ning projective varieties, Journal Amer. Math. Soc. 4 (1991), 587-602[BF] R. Braun - G. Floystad, A bound for the degree of smooth surfaces in P4 not of generaltype, Compositio Math. 93 (1994), 211-229[BOSS] R. Braun - G. Ottaviani - M. Schneider - F. Schreyer, Boundedness for non generaltype 3�folds in P5, to appear
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Mathematical PhysicsSession organised by Sylvie PaychaThe aim of the session organised on mathematical techniques in statistical physicsand quantum �eld theory was to give an idea of some of the mathematical problemsthat have recently arisen in relation to both these �elds. Because of the wide spectrum ofthe topics presented within this session, the speakers were asked not so much to go intotechnical details but rather to give a brief overview of the mathematical techniques involvedin their work and to try to show the motivations behind them arising from statistical physicsof quantum �eld theory.The topics of the talks were chosen in such a way that the spectrum of mathematical tech-niques involved would be as broad as possible; probability theory (Flora Koukiou), algebraictechniques (Marjorie Batchelor), analysis on super manifolds (Alice Rogers) and algebraicgeometry (Claire Voisin). In this sense, the emphasis during this session was not put ona systematic presentation of the mathematical tools, but rather on how they can be usedto understand problems of physical origin such as phase transition (Flora Koukiou), thestructure of spaces of maps involved in the path space description of certain quantum �eldtheories (Marjorie Batchelor), quantisation of supersymmetric theories (Alice Rogers) andsome aspects of super conformal theories (Claire Voisin).We hope these talks will give the reader some insight in these �elds of mathematicalphysics and convince her/him that theoretical physicists and mathematicians still have a lotto learn from each other! Sylvie Paycha





Proc. of the 7th EWMmeeting, Madrid, 1995Mirror SymmetryClaire Voisin (written by Sylvie Paycha and Alice Rogers)Universit�e de Paris XI, Francevoisin@diam1.ens-cachan.frWarning : This is a summary of two introductory talks given by Claire Voisin on mirrorsymmetry. These notes (revised by C. Voisin) were written by S. Paycha and A. Rogersfollowing the lectures given by Claire Voisin. Because of the length of the talks, we could onlyo�er here a summary of these lectures. However, we have tried to keep the spirit of ClaireVoisin's talk in which her main concern was not so much to go into technical details as togive the audience an idea of the main topics of research related to mirror symmetry, a �eldwhich is evolving rapidly. We have also tried to make these notes accessible to non specialists,at the cost of remaining vague. The reader interested in further details is referred to ClaireVoisin's book on Mirror Symmetry and references therein.Abstract: Calabi-Yau manifolds are de�ned and the notion of a mirror pair is introduced.The physical origins of mirror symmetry are described, together with steps towards a moremathematical understanding.1. IntroductionThis paper is devoted to the description of the mirror symmetry phenomena; �rst discoveredby physicists, it should associate to a Calabi-Yau variety X a mirror X 0 satisfying Hp;q(X) =Hn�p;q(X 0), n = dimCX = dimCX 0. Furthermore, one should have an identi�cation forthe moduli space MX parametrising marked complex structures plus complexi�ed K�ahlerparameters on X with the corresponding moduli space MX 0 on X 0, in such a way that thetwo factors are interchanged.Physicists discovered mirror symmetry via the study of superconformal �eld theories de-rived from supersymmetric � models on Calabi-Yau manifolds. Further information, withimportant mathematical applications, is obtained from the Yukawa couplings of these theo-ries.2. Yau's TheoremIn this paragraph, we recall some basic notions in complex analysis and algebraic geometrywhich occur in the description of mirror symmetry that follows (see e.g [GH] ).2.1. K�ahlerian manifoldsLet X be a di�erentiable manifold of dimension N and 
k(X;R) denote the space of realdi�erential forms of degree k on X , the elements of which can locally be seen as linear101



102 Claire Voisin (written by Sylvie Paycha and Alice Rogers)combinations of expressions of the type dxi1^� � �^dxik with coe�cients given by di�erentiablefunctions on X , where fi1; � � � ; ikg � f1; � � � ; Ng when using local coordinates (x1; � � � ; xN).Using the exterior di�erentiation d : 
k(X;R) ! 
k+1(X;R), one can de�ne De Rhamcohomology spaces Hk(X;R) (resp. Hk(X; C)) as quotients Ker d=Imd of the space of real(resp.complex) closed k-forms ( recall that � is closed whenever d� = 0 ) on X by the spaceof real (resp.complex) exact k-forms (recall that � is an exact form whenever there is a form� such that � = d� ).Let now X be a complex manifold of dimension n and let 
p;q(X) denote the space ofcomplex forms of type (p; q) on X , the elements of which can be seen as linear combinations ofexpressions of the type dzi1^� � �^dzip^d�zj1^� � �^d�zjq with coe�cients given by di�erentiablefunctions on X (where fi1; � � � ; ipg; fj1; � � � ; jqg are subsets of f1; � � � ; ng) when using localcoordinates (z1; � � � ; zn).In particular a complex two-form on X is an element of 
2;0X �
1;1X �
0;2X . More generally,we have 
kX � Xp+q=k
p;qX :Using the operator �@ : 
p;qX ! 
p;q+1X , (de�ned by �@ = Pni=1 d�zi@=@�zi), one can de�ne ina similar way as above the Dolbeault cohomology spaces Hp;q(X) as quotients Ker �@=Im�@.Since for �xed p, (
p;qX ; �@) is a resolution of the holomorphic sheaf 
p;0X , we have Hp;q(X) =Hq(
p;0X ).A hermitian metric h on a complex manifold X is a hermitian structure hx on each tangentspace TxX which varies in a di�erentiable way with x.A K�ahler manifold is a complex manifold X which can be equipped with a hermitianstructure, the imaginary part of which is a closed form (called the K�ahler form) of type(1; 1) that is J-invariant, in other words, such that h = g � i!, with d! = 0, g ( resp.!) being a symmetric (resp. antisymmetric) real form. It can also be seen as a complexmanifold X equipped with a hermitian metric h such that the Levi-Civita connexion r forthe metric g = <(h) is compatible with the hermitian structure, i.e r = r1;0 � r0;1 anddh(u; v) = h(r1;0u; v) + h(u;r0;1v).Let us now assume X is compact and K�ahlerian. There is a Hodge decomposition forthe cohomology spaces Hk(X; C) into a direct sum of Dolbeaut cohomology spaces. Thecohomology spaces Hk(X; C ) and Hp;q(X) are related by:Hk(X; C ) = �p+q=kHp;q(X):Since a K�ahler form ! is a real closed form, one can consider its K�ahler class [!] in H2(X;R)and we have [!] 2 H1;1(X)\H2(X;R), because ! is everywhere of type (1; 1).Lemma 1 The set of K�ahler classes in H2(X;R) is an open cone - the K�ahler cone- inH1;1(X) \H2(X;R).Remark 2 In the case when H1;1(X) = H2(X; C), the K�ahler cone is open in H2(X;R)and hence contains integer classes. X is then algebraic by Kodaira's theorem.



Claire Voisin (written by Sylvie Paycha and Alice Rogers) 1032.2. Calabi-Yau manifolds and Yau's theoremLet X be a complex manifold and let TX denote its tangent bundle (the �bre of which isthe tangent space TxX at point x), T �X the cotangent bundle (the �bre of which is the dualspace T �xX to the tangent space at point x). Both these bundles split into a direct sumTX = T 1;0X � T 0;1X , T �X = T �1;0X � T �0;1X , T 1;0X (resp.T �1;0X ) corresponding to the holomorphicpart of the tangent (resp. cotangent) bundle and T 0;1X (resp. T �0;1X ) to its antiholomorphicpart.The canonical line bundle KX is the holomorphic vector bundle �nT �1;0X of rank 1 on X ,the �bre of which is generated by the n-form dz1^� � �^dzn using holomorphic local coordinates(z1; � � � ; zn). It is trivial whenever there is a nowhere vanishing holomorphic n-form on X .A Calabi-Yau manifold is a compact K�ahler manifold with trivial canonical line bun-dle. Elliptic curves, abelian surfaces are examples of Calabi-Yau manifolds. They are oftenobtained as hypersurfaces inside larger manifolfds, like quintics which are hypersurfaces ofdegree 5 (see [GH] for the notion of degree of a variety) in the projective space P 4.Let �KX denote the vector bundle �nT 1;0X of rank 1 onX , the �bre of which is generatedby @@z1 ^ � � � ^ @@zn using local coordinates (z1; � � � ; zn). A hermitian metric h on X induces ahermitian structure on the tangent bundle TX (which means a hermitian structure on each�bre TxX , the hermitian structures depending in a di�erentiable way on the base point x) andhence a metric h�K on �KX . The K�ahler metric h will be called K�ahler-Einstein wheneverthe curvature !�K � 12i�@ �@h�Kof h�K vanishes. This two form is related to the Ricci curvature of the Riemannian metric gunderlying the hermitian structure h so these metrics are in fact Ricci 
at.Whereas given � in the K�ahler cone of a given K�ahler manifold, there are various hermitianmetrics h = g � i! such that [!] = �, the following theorem by Yau shows that on a Calabi-Yau manifold, Ricci 
at K�ahler metrics are in one to one correspondance with cohomologyclasses of K�ahler forms.Theorem 3 (Yau) On a Calabi-Yau manifold (X; h), for any � in the K�ahler cone, thereis a unique Ricci 
at K�ahler metric h = g� i! on X, with K�ahler form ! in the cohomologyclass � 2 H2(X;R) of �.3. Mirror symmetry3.1. Deformations of complex structuresA complex structure on X is described in terms of a �eld of linear operators Jx; x 2 Xeach acting on the tangent space TxX with the property that J2x = �I (this yields apseudo-complex structure) and satisfying an integrability condition (which makes the pseudo-complex structure into a complex structure). The eigenspaces of Jx corresponding to theeigenvalues i and �i yield a splitting TxX = T 1;0x X � T 0;1x X . A deformation of the complexstructure is a deformation Jt of this �eld of operators J which yields another splittingTxX = T 1;0x;tX � T 0;1x;tX:



104 Claire Voisin (written by Sylvie Paycha and Alice Rogers)Let us introduce the Dolbeault cohomology group de�ned as the quotient spaceH1(TX) � Ker(�@ : T 1;0X 
 
0;1X ! T 1;0X 
 
0;2X )=Im(�@ : T 1;0X ! T 1;0X 
 
0;1X )It is a general fact that H1(TX) parametrizes �rst order deformations of the complex struc-tures on X . An important fact is a result due to Bogomolov, Tian and Todorov and provedrecently in a more algebraic way by Ran concerning deformations of complex structures on aCalabi-Yau manifold.Theorem 4 The small deformations of the complex structure J on a Calabi-Yau manifoldform a smooth family -the Kuranishi family-whose tangent space at X is H1(TX).Remark 5 Deformations of the complex structure do not modify the triviality of the canon-ical bundle KX .3.2. Moduli spaceAlthough the cohomology group H1;1(X) in which lies the K�ahler cone is naturally real, oneis led to complexifying the K�ahler cone, thus introducing a complexi�ed K�ahler parameter! = �+ i�, where � is in the K�ahler cone and � 2 H2(X;R) is de�ned modulo 2�H2(X;Z).For each complex structure Jt on X making X into a complex manifold Xt, we can de�nesuch a complexi�ed K�ahler parameter ! 2 H2(Xt; C ) modulo 2i�H2(X;Z). Assuming thatthe manifold X satis�es the condition H2(X; C) = H1;1(X), the K�ahler cone is open inH2(X;R) and hence ! varies locally in an open set of H2(Xt; C ). H2(Xt; C ) being locally aconstant vector space independent of t- this means that deformations of the complex structureX ! Xt followed by deformations of the K�ahler structure ! on Xt can be locally interpretedas products of complex deformations and K�ahler deformations.Let X be a Calabi-Yau manifold. The moduli spaceMX � f(Xt; !)g is the set of coupleswith �rst term given by an isomorphism class of complex structures Xt on X obtainedby deformations Jt of the initial complex structure J on X and second term given by acomplexi�ed K�ahler parameter ! on Xt. From the above discussion it follows that if Xsatis�es the condition H2(X; C) = H1;1(X), thenMX is locally a direct product. However,this product structure does not hold in general globally, in particular since the K�ahler conecan depend on t.This local product structure reads on the level of tangent spaces as:TMX = H1(TX)�H1(
X)since H1(TX) describes in�nitesimal deformations of complex structures and H1(
X) de-scribes in�nitesimal deformations of K�ahler strutures.3.3. Mirror symmetryMirror symmetry predicts the existence for a given Calabi-Yau manifold X , of a Calabi-Yau mirror manifold X 0 of same dimension as X and such that there is an isomorphismM :MX �=MX 0 by which complex deformations and K�ahler deformations are swapped orin other words with the property that the local product structure of moduli space is preservedbut the factors exchanged.



Claire Voisin (written by Sylvie Paycha and Alice Rogers) 105This \conjecture" predicted by physicits cannot be completely true because there are rigidCalabi-Yau manifolds which have no complex structure moduli, whose mirror could thus noteven be K�ahlerian. Although it has been con�rmed in a wide range of cases it is not yetmathematically fully understood.Remark 6 The manifold X and its mirror X 0 are in general topologically very di�erent!The conjecture mathematically translates as follows. Since the local structure of MXarises from the splitting TMX = H1(TX)�H1(
X);one expects the tangent mapM� toM to induce isomorphisms:H1(TX) ' H1(
X 0)and H1(
X) ' H1(TX 0):More generally, one expects a sequence of isomorphisms:Hp(�qTX) ' Hp(�q
X 0)Since the canonical line bundle KX is trivial, the holomorphic bundles �qTX and �n�q
Xare isomorphic, using a global section of KX and this induces isomorphis ms:Hp(�qTX) ' Hp(�n�q
X)where n is the dimension of X and hence the Betti numbers hp;q(X 0) � dimHp;q(X 0) of X 0(see [GH]) should be equal to hn�p;q(X) of X . Hence, the topology of X 0 is determined bythat of X .4. Mirror symmetry and physics4.1. The N=2 supersymmetric �-modelLet (X; g) be a Riemannian manifold. Just as point-particles are classically described by paths� : [0; T ]! Rd evolving in space-time which minimise the energy S(T ) � R T0 kd�dt k2 given interms of their length, we shall de�ne a bosonic �- model classically by \paths" � : � ! Xde�ned as maps on a Riemann surface � with metric 
 with values in M which minimise theaction (or energy) S(�; 
)� Z� kd�k2:S is invariant under conformal transformations of �, i.e under di�eomorphisms of � whichmultiply the metric 
 pointwise by a positive factor, namely di�eomorphisms f such thatthere is a function h on � with (f�
)(x) = eh(x)
(x). When X is K�ahlerian, and � is theK�ahler form on X , the action readsS(�; 
) = Z� ���+ Z� 2k�@�k2where ��� is the pull-back of � on � by �. Furthermore, one can check that the criticalpoints of S which give the classical paths coincide with the critical points of the actionS(�; 
; �)� Z� kd�k2 + Z� ���



106 Claire Voisin (written by Sylvie Paycha and Alice Rogers)for any closed two form � on X . From these two remarks it follows that for a K�ahler manifold(X; g) with K�ahler form �, the classical � model can equally well be described in terms ofthe action: S(�; !)� Z� ��! + Z� 2k�@�k2where ! = � + i� is now a complexi�ed K�ahler parameter, � being a closed 2-form. Infact, the actual actual parameter is the class of � in H2(X;R)=2�H2(X;Z) since an exactform contributes to the action only through a boundary term R@� ��
 via Stokes formula andphysicists are only interested in the exponentiated action.The action is invariant under conformal transformations of �. These transformations aregenerated by Ln = zn @@z .A super-symmetric �-model is classicaly described by �elds � : � ! X where X is asbefore a Riemannian manifold, and � is a super Riemann surface, with one commutingcoordinate z and one anticommuting coordinate � (as described in Alice Roger's talk) whichminimise an action C (�) invariant under conformal transformations in a similar way to thebosonic action S as well as one set of supersymmetries , corresponding to odd vector �eldson �. Alvarez-Gaum�e and Freedman [AF] showed that if X is a K�ahler manifold there isan additionnal set of supersymmetries, so that the theory has what is known as N = 2superconformal symmetry; these symmetries are maintained under quantisation providedthat X is Calabi-Yau. Thus we have a mapping from the set of Calabi-Yau manifolds intothe set of N = 2 superconformal theories; this map was a key ingredient in the discovery ofmirror symmetry.4.2. Quantisation and the Virasoro algebraGiven a classical �eld theory � : V ! X (where V is a given manifold) with action S(�) �RV L(�; @i�; � � �)dvol(x), the space of solutions of the classical Euler equations is equippedwith a Poisson structure. Noether's theorem associates functions on the space of solutions toin�nitesimal symmetries of the action, in a compatible way with the Lie and Poisson brackets.In�nitesimal symmetries then yield evolution equations using the brackets @@t� = fH; �g.Quantising the classical model means �nding a representation on a Hilbert space of statesof a set of functionals called observables equipped with the Poisson brackets. The quantisedtheory can then be reconstructed from the correlation functions < f1(x1) � � �fk(xk) > wherexi; i = 1; � � � ; k are points on V and\ < f1(x1) � � �fk(xk) >� Z�2Map(V;M)f1(�(x1)) � � �fk(�(xk)))e�S(�)d�":The integral is to be interpreted here as a formal in�nite dimensional "Lebesgue integral" onpath space Map(V;M).Coming back to the bosonic �-model � : �! X , let us notice that since the action arisesin the "path integral" as an exponent, and since we have S(�; 
; !) = S(�; 
) + i R� ���,� being a form in H2(X;R)=2�H2(X;Z), the correlation functions are independent of thechoice of representative � modulo 2�Zand are thus well-de�ned.Quantisation of a conformal �eld theory should give a (possibly projective) representationof the Virasoro algebra (that is, the algebra generated by L and �L) and hence a theorysatisfying Segal's axioms (described in [Ga]).



Claire Voisin (written by Sylvie Paycha and Alice Rogers) 107In a similar manner one expects quantisation of an N = 2 supersymmetric sigma modelto lead to an N = 2 conformal theory, that is, essentially a representation of the superVirasoro algebra with central charge. This algebra has even generators Lm; �Lmm 2 Z(asfor the purely bosonic conformal group) and Jm; �Jmm 2 Z, together with odd generatorsG+r ; G�s ; �G�r ; �G�s ; r; s 2 Z+ 12 and an even central charge C. Full details of this algebra aregiven in [V] where it is also shown that there is an involution of this algebra de�ned byG+r $ G�r , �G�r $ �G�r , �G+r $ �G+r , Jm ! �Jm; �Jm ! �Jm. Under this involution two subringsof the representation, known as the chiral-antichiral ring Rca and the chiral-chiral ring Rcc,are interchanged. This interchange of rings is the next step in the physicist's constructionof mirror symmetry; the �nal step involves reversal of the steps that lead from a Calabi-Yaumanifold to the (for example) chiral-chiral ring of the corresponding superconformal �eldtheory. The chiral-antichiral ring of one superconformal theory (derived from a Calabi-Yaumanifold X) is the chiral-chiral ring of a superconformal theory which can be realised by anon-linear �- model on an di�erent manifold X 0, and the idea is that these two manifoldswill be a mirror pair. Now the relation with geometry is given by the description of the(anti)chiral rings in terms of the Dolbeault cohomology of the target manifold of the �-model.The relation with mirror symmetry comes from the fact that the rings Rca and Rcc havebigradations Rp;qca and Rp;qcc corresponding to eigenvalues of J0 and �J0, with Rp;qc;c �= Hq(�pTX)and R�p;qc;a �= Hq(�p
X).Witten suggests a more geometric interpretation, whereby mirror symmetry would ex-change two supersymmetric quantum �eld models, a model A built from X and a model Bbuilt from its mirrorX 0 thus exchanging special correlation functions called Yukawa couplingscomputed for each of these models, which we shall denote by Y for the model A and Y 0 forthe model B. As we shall see below, the (normalised) Yukawa coupling Y is an n-symmetricform on H1(TX) and Y 0 is an n-symmetric form on H1(
X 0).5. Mirror Symmetry and MathematicsThe construction of the mirror pair of a Calabi-Yau manifold using superconformal �eldtheory is both indirect and (in places) tenuous. It is natural to ask whether there is not somemore direct and rigorous way of obtaining the mirror pair. At present no such method isknown, but considerable progress has been made towards this goal.5.1. Mathematical evidence for mirror symmetryProperties of Yukawa couplings give a hint towards mirror symmetry.Let X be a Calabi-Yau manifold of dimension 3 such that h1(X) = 0. For a given� 2 H3;0(X) where H3;0(X) enters in the Hodge decomposition H3(X; C) = H3;0(X) �H1;2(X) � H2;1(X)� H0;3(X) =, one de�nes a Yukawa coupling Y� on X as a symmetricthree form on H1(TX): Y�(u1; u2; u3) �< �2; u1 � u2 � u3 >where < �; � > corresponds to Serre duality (see e.g [GH] chap.1), u1 � u2 � u3 2 H3(�3TX)where u1 � u2 � u3 denotes the cup-product [GH] of u1; u2; u3.



108 Claire Voisin (written by Sylvie Paycha and Alice Rogers)These Yukawa couplings have a remarkable property, namely that they arise as "deriva-tives" of a potential for a natural choice of coordinates onMX . In other words, there is a spe-cial choice for the parameter � and there are special coordinates z1; � � � ; zN , N = dimH1(TX)on MX (depending on a choice of symplectic basis on H3(X;Z) for the intersection form)and a function F (z1; � � � ; zN) such that (see [V] Proposition 3.3)Y�( @@zi ; @@zj ; @@zk ) = @3@zi@zj@zkFThis construction also yields a 
at structure (coordinates de�ned up to a�ne transformation)on MX which depends on the symplectic basis chosen on H3(X; C). (see Lemma 3.2 in [V]).5.2. Predictions of mirror symmetryConfronting these results with the results predicted by mirror symmetry gives evidence formirror symmetry.Let X be as before a three dimensional Calabi-Yau manifold with h1(X) = 0. If mirrorsymmetry exists, there is a local identi�cation between deformations of complex structuresand deformations of the K�ahler parameter on its mirror X 0. Since there is a canonical
at structure on the K�ahler deformations of X 0, mirror symmetry predicts the existence ofa 
at structure on the space of deformations of the complex structures on X .Let M be the mirror map; Y 0� � M�(Y�) gives a cubic form on H1(
X 0) which dependsonly on the K�ahler parameter. One beautiful prediction due to the physicists (cf Witten) isthe description of Y 0 in terms of cubic derivatives of the Gromov-Witten potential G- thede�nition of which involves Gromov-Witten invariants of Y 0� (see [A], [LY], [V]). Hence withthe privileged choice of coordinates on either side as described above, the mirror map M hasto be a�ne linear and one expects that M�F = G, F being the potential de�ned above forY� ( in fact up to a quadratic function of the 
at coordinates).This identi�cation predicts the number of rational curves in a quintic of any degree. Pre-dictions have been checked up to degree 4 (see [ES], [LY]).These are only a few hints for mirror symmetry. There have been many other investigationsmade in that direction, such as Batyrev's combinatorial construction of a beautiful series ofexamples, for which we refer the reader to [V].ReferencesThese are only a few references around the topic of mirror symetry. We refer the reader to[V] for further references.[A] M. Audin,Cohomologie quantique, Bourbaki vol 1995-96, Expos�e 806 , Nov 1995[AF] L.Alvarez-Gaum�e, D. Freedman, Geometrical structure and ultraviolet �niteness in thesupersymmetric �-model, Comm. Math. Phys. 80 p.443-451 (1981)[D] R. Dijkgraaf, Mirror symmetry and elliptic curves, in The Moduli Space of Curves (R.Dijkgraaf, C.Faber, G. Van der Geer Eds.), Birkh�auser, 1995[Ga] K.Gawedski, Conformal �eld theory, S�eminaire Bourbaki, exp. 704, 1988-89



Claire Voisin (written by Sylvie Paycha and Alice Rogers) 109[G] D.Gepner, exactly solvable string compacti�cations on manifolds of SU(n)-holonomy,Physics Letters B, Vol. 199, n 3, p.380-388[GH] P.Gri�ths, J. Harris, Principles of algebraic geometry, Wiley-Interscience Publication,1976[GP] B.R Greene, M.R Plesser An introduction to Mirror Manifolds, in \Essays on MirrorManifolds" , Ed. S.T. Yau, International Press[ES] G.Ellingsrud, S.A. Stromme, The number of twisted cubics on the general quintic three-fold, in \Essays on Mirror Manifolds" , Ed. S.T. Yau, International Press[LY] B.H.Lian, S.T. Yau Mirror Symmetry, Rational curves on algebraic manifolds and hy-pergeometric series, Proceedings of the XIth International Congress of MathematicalPhysics, Ed. D.Iaglnitzer (1995)[M] D.Morrison, Mirror symmetry and rational curves on quintic threefolds: a guide formathematicians, Journ. Amer. Math. Soc. 6 (1993), p.223-247[V] C. Voisin, Sym�etrie Miroir, Panoramas et synth�eses, Soci�et�e Math�ematique de France,1996 ( to appear)[W] E. Witten,Mirror manifolds and topological �eld theory in \Essays on Mirror Manifolds",Ed. S.T. Yau, International Press p. 120-158





Proc. of the 7th EWMmeeting, Madrid, 1995Modelling the randomness in physicsFlora KoukiouUniversit�e de Cergy-Pontoise, Francekoukiou@u-cergy.frRandomness is one of the paradigms of modern physics. During the last years a widevariety of models of disordered statistical mechanics have been introduced and studied. Bydisordered system we mean a system with quenched (frozen-in) randomness which vary fromsample to sample. For modelling randomness one can either introduce random pertubationsin an ordered system, or consider random interactions between the di�erent components ofthe system. In the case of perturbations, an important question to address is about thestability of phase transitions under random perturbations. The case of random interactions(spin glasses) is much more di�cult and still heavily debated. We can however use a mean�eld theory to study the behaviour of the system by neglecting the e�ects of 
uctuations.In many cases 
uctuations are irrelevant: systems in su�ciently many spatial dimensionsor with long-range interactions (each component interacts with each other component). Inmathematical physics, mean �eld models are usually provided by systems de�ned on completegraphs or trees.In the following, we present a simple application of the theory of branching random walks tothe mean-�eld theory of a random systems de�ned on regular trees. In a tree of coordinationnumber d � 2, one can study mean �eld models of spin glasses or directed polymers usingthe theory of branching random walks.We can de�ne a simple model on a d-tree (i.e. each vertex has d edges; for instance thedyadic tree is a 2-tree) as following:Let Tn be a �nite d-tree. If v is a vertex, we denote by jvj the number of edges (or steps)of the path going from the root to v. We have thus dn paths p of jvj = n steps. On thisd-tree we can do simple random walks starting at the root and choose any of the d edgescoming out independently. Let w(�) be a random variable de�ned on the probability space(
;F ; P ), depending on a real variable � called temperature. We assume moreover that thevariable w(�) has moments of all orders and that w�1(�) is almost surely bounded. To eachedge b 2 Tn we assign the random energy wb(�) having common distribution with w(�). Wehave thus a family of independent identically distributed random variables fwb(�); b 2 Tngindexed by the edges of the tree. In models of statistical physics, the variables fwb(�)gare associated with the Boltzmann factors. In the case of random interactions between thecomponents of a system, each path p from the root to the vertex v, corresponds to a spincon�guration whose Gibbs weight is given by the sum of energies over the jvj edges. In thecase of directed polymers the energy of each walk is given by the product of the energies ofthe visited edges.0Work partially supported by the EU grant CHRX-CT93-0411111



112 Flora KoukiouHaving this in mind, we can de�ne on Tn, the partition function of the models byZn(�) =Xp Yb2pwb(�);the speci�c free energy by Fn(�) = n�1 logZn(�):Moreover, the Gibbs distributions can be de�ned by the following random measures�n;�(�) = Qb2pwb(�)Zn(�) :The main object of interest is the behaviour of the previous quantities at the macroscopic,or thermodynamic, (n ! 1) limit as function of �. In order to study this behaviour wecan express the previous de�ned thermodynamic quantities as random measures. Remarkingthat the d-adic partition of the unit interval corresponds to the d-tree, we can de�ne andstudy random measures on the unit interval which are related to Zn(�) and �n;� .In many cases, there exists a value of �, called critical temperature, �c, such that for� < �c:� Zn(�) goes to a non zero limit as n!1;� the limit F1(�) = limn!1n�1 logZn(�)exists almost surely and is given by n�1 logEZn(�) (E(�) means the expectation). Thisresult gives the existence and the so-called self-averaging property of the free energy,i.e., the coincidence of the annealedlimn!1 1n logEZn(�)and quenched limits limn!1 1nE logZn(�);� �(n; �) has a unique (weak) limit �(�), as n! 1.. On the other hand, for � � �c we have� Zn(�) goes to zero as n! 1;� the limit F (�)1 = limn!1 n�1 logZn(�), exists almost surely and it is a non randomquantity. Using large deviation techniques we can explicitely calculate this limit;� in general, there are many limits of �n;�(�).The phenomenon of phase transition is expressed by the previous setting. The regionof � < �c is called the high temperature region and � � �c de�nes the low temperatureregion. This simple model provides a general framework for all mean �eld models studiedby physicists and gives some insight to our understanding of phases transitions in randomsystems. The interest reader can found the detailed de�nitions and proofs in \The mean �eldtheory of directed polymers in random media and spin glass models ", Rev. Math. Phys. 7,183{192, (1995).



Proc. of the 7th EWMmeeting, Madrid, 1995Super moduli spaceAlice RogersKing's College, London, Englandf.a.rogers@kcl.ac.uk1. IntroductionModuli spaces have been one of the themes of this meeting; in this paper my aim is to showhow moduli spaces may be used in the functional integration approach to the quantisation ofsystems with symmetry, with particular reference to the super moduli space of super Riemannsurfaces and the spinning string. At the outset it should be made clear that the term `super'implies an extension of some standard object to include anticommuting elements in somesense, the term deriving its name from the notion of supersymmetry in physics.The Feynman path integral was initially developed as a method for determining the timeevolution of a quantum system; for some systems the path integral formulation may bederived rigorously from canonical quantisation. A generic feature of this approach, evenwhen extended either rigorously or heuristically to quantum �eld theory (in which case pathintegrals become functional integrals) is the emergence of the term exp(�iS) (where S is theaction of the theory), so that covariance, absent in the canonical approach, is restored in thepath integral. This suggests that the path integral may be a more fundamental starting pointthan the canonical approach; and such integrals are widely used to de�ne the quantisation ofa theory when there is no direct derivation of the functional integral by canonical methods.There remain many features of functional integrals which are not well understood, but formalmanipulations have led to remarkable insights in both mathematics and physics, so that thepursuit of a proper understanding of these integrals seems highly desirable.In this paper the basic idea of the Feynman path integral in quantum mechanics is de-scribed, and a very heuristic description given of the extension of these idea to functionalintegrals in quantum �eld theory, and the modi�cation needed when a system has a gaugesymmetry. In Section 9 these ideas are applied to the bosonic string, and it is shown that thefunctional integral reduces to an integral over the moduli spaces of Riemann surfaces. In the�nal section we see that the spinning string leads to an integral over a super moduli space.2. The Feynman path integral in quantum mechanicsIn quantum mechanics a key equation is the Schr�odinger equation@f@t = �iHf (1)which determines the time evolution of the wave function f of a system whose Hamiltonianis H . (The Hamiltonian is a sef-adjoint operator on the Hilbert space H of wave functions.)113



114 Alice RogersFor the case of a single particle of unit mass moving in one dimension under a �eld of forcederived from a potential V (x), wave functions are square integrable functions on the real line(with di�erentiable dependence on time as well) and the Hamiltonian takes the formH = H0 � V (x) (2)where H0 = �12 d2dx2 . The system is solved if the operator exp(�iHt) is known, since thisleads to solutions of the Schr�odinger equation (1). It is su�cient to determine the kernel ofthis operator, that is, the function exp(�iHt)(qI ; qF ) which satis�esexp(�iHt)f(qF ) = Z dq exp(�iHt)(q; qF )f(q): (3)(Here we are being vague about analytic details, and cheerfully assuming kernels exist; this ofcourse depends on the nature of V ; all the analytic questions become much more tractable ifone considers exp(�Ht). A good entry point to the literature on these matters is [1].) Sinceexp(�iHt) exp(�iHs) = exp(�iH(s+ t)), the kernels of these three operators are related bythe involutionexp(�iH(s+ t))(qI ; qF ) = Z dq exp(�iHs)(qI ; q) exp(�iHt)(q; qF ): (4)The trick required to derive the path integral expression for the kernel of exp(�iHt) is touse the fact thatexp(�iHt) = �exp(� iHtN )�N � �exp(� iV (q)tN )�N �exp(� iH0tN )�N (5)for large N . Then the involution (4) repeated N � 1 times givesexp(�iHt)(qI ; qF ) = Z N�1Yi=1 dqi NYi=1 exp(�iH�t)(qi�1; qi) (6)where �t = tN , q0 = qI and qN = qF , and thus, if N is su�ciently large,exp(�iHt)(qI ; qF ) � Z N�1Yi=1 dqi NYi=1 exp(�iV (qi)�t)(exp(�iH0�t)(qi�1; qi))/ Z N�1Yi=1 dqi NYi=1 exp(�iV (qi)�t) exp� i(qi � qi�1)22�t �= Z N�1Yi=1 dqi exp"i NXi=1  �V (qi)�t+ �qi � qi�12�t �2!�t#= Z Dq exp�i Z t0 (�V (q(s)) + 12( _q(s))2ds� (7)where Dq denotes that the integral is to be taken over all paths q(s) satisfying q(0) = qIand q(t) = qF . The expression in the �nal line is essentially de�ned by the line above. (Theargument presented here roughly follows the ground-breaking work of Feynman and Hibbs[2].)



Alice Rogers 115The �nal expression has the classic formZ Dq exp�iS(q(�))where S = R t0 �12( _q(s))2 � V (q(s)�ds is the action of the system. As mentioned before,physicists proceed to quantise a vast range of systems by investigating this integral for theappropriate action. For instance, in quantum �eld theory, where instead of a single con�gu-ration variable q(t) there is one for each point x in space, the integrals become sums over allfunctions (or �elds) �(x; t) on spacetime, and the path integral is writtenZ D� exp�iS(�(�; �)) (8)where S(�(�; �)) denotes the action of the system.When the system has a symmetry, that is, some group G acts on the space of �elds insuch a way that the action S(�(�; �) is invariant, the functional integral is taken of the spaceof �elds modulo the action of the group G. This space is in general smaller than the fullspace of functions, but may be more complicated. However in the case of some very highlysymmetric theories, particularly string theories and topological �eld theories, the space is�nite-dimensional, and has an interesting geometrical interpretation.3. The moduli space for string path integralsThe �rst example I shall consider of a theory where the function space is reduced to a �nite-dimensional moduli space is closed bosonic string theory, following the approach of Polyakov[3], which is explained together with many mathematical developments by Bost [4]. In thiscase the classical action isS(g(�); X(�)) = Z� d2xqdet gij(x)gij(x)@iXa@jXb�ab (9)where � is a 2-dimensional surface, gij are the components of a Riemannian metric g on�, X is a mapping of � into Rd (a consistent quantum theory being obtained when d, thedimension of the space-time Rd in which the string moves, is equal to 26), and �ab is theMinkowski metric in Rd. To quantise the theory the functional integralZ DXDg exp(�iS(X(�); g(�))must be evaluated over the space of all �elds X; g, modulo the symmetries of the theory. Itis su�cient to consider only � which are compact surfaces without boundary, summing theresults for each possible genus. The action of the theory is symmetric both under the action ofthe di�eomorphism group of the surface � and under conformal transformations g 7! e�(x)g.It is possible to carry out the X integration explicitly, since this integral is a Gaussian, sothat it remains to integrate a function of the metric g over the space of all possible g modulothe symmetries. It turns out that this space is simply the moduli space of all possiblecomplex structures on �. To see this, suppose that g has components gij with respect tolocal coordinates xi; i = 1; 2 on �; then it is always possible to choose a di�eomorphism (andhence new local coordinates yi; i = 1; 2) on � such that the new components have the form



116 Alice Rogersgij = e�(x)�ij . Suppose that ŷ1; ŷ2 are some other coordinates where the components of g arealso diagonal, and that z and ẑ are de�ned as z = y1 + iy2, ẑ = ŷ1+ iŷ2. Then (by standardarguments in complex function theory) z is an analytic function of ẑ. Thus each conformaland di�eomorphism class of metrics determines a complex structure on �, and the space overwhich the functional integral for the closed bosonic string must be carried out is the modulispace of complex structures on the surface �. This space has been much studied, and is a�nite-dimensional manifold with singularities. In the next section it will be seen that theanalogous space for the spinning string is a super moduli space.4. Super moduli space and the spinning stringTo incorporate fermions (that is, particles with half integral spin) into string theory, thespinning string is introduced. The geometric theory of the spinning string can be formu-lated using anticommuting variables, as �rst described by Howe [5]. The ingredients arecomplicated but have become standard in supergravity theory. They involve the notion ofsupermanifold, which can be de�ned in a bewildering number of di�erent ways; however aquite naive approach is su�cient for this lecture. The action of the spinning string isS(EAM) = 14 Z� d2x d2� superdet (EAM)D�V D�V (10)where x1; x2 are even commuting coordinates and �1; �2 are odd anticommuting coordinateson the (2; 2)-dimensional supermanifold �, EAM is a generalisation of a metric on � (describedbelow), V is a function on � and D� is a di�erential operator whose precise de�nition is notimportant here.The object EAM is known as a vielbein and generalises the zweibein version of a metric: ona standard 2-dimensional manifold a metric is a symmetric non-degenerate quadratic form onthe tangent space; thus there exist orthonormal bases ea; a = 1; 2 of the tangent space; sucha basis is not unique, there is an SO(2) bundle of orthonormal frames. This bundle containsall the data of the metric. With respect to local coordinates the dual basis ea of one-formsmay be expanded as ea = eam dxm: (11)A basis e1; e2 is known as a zweibein.Returning to the supermanifold, we consider a reduction of the frame bundle (which is infact a super group bundle) to an SO(2) bundle, with action on the preferred frames takingthe form � EaE� � = � R2 00 R �� EaE� � (12)where Ea and E� are respectively the two odd and two even elements of the preferred basisof the tangent space, and R is an element of SO(2). The allowed vielbein are constrained sothat the bundle omits a connection with some components of the torsion taking a prescribedform. (This is a physical requirement.)Expanding the dual basis Ea; E� of the cotangent space in terms of the coordinate basisxm; �� we have 16 components of the vielbein forming an invertible matrix� Eam E�mEa� E�� � :



Alice Rogers 117The superdeterminant of a matrix � A BC D �of this nature is de�ned to be det(A�BD�1C)(detD)�1. (It is a non-trivial property of thesuperdeterminant that it obeys the multiplicative rule.)The �nal geometrical ingredient needed is a notion of integration; this is de�ned byZ d2x d2� (f(x) + f1(x)�1 + f2(x)�2 + f12(x)�1�2) = Z d2x f12(x): (13)The super conformal geometry emerges from the symmetries of the theory; these aresuperdi�eomorphisms of �, together with so-called super Weyl transformations [5]� Eam E�mEa� E�� � 7! 0@ �Eam �12E�m � 12��12Eam
��a D���Ea� �12E�� � 12��12Ea�
��a D�� 1A :(Here 
��a are the Dirac 
-matrices which represent the 2-dimensional Cli�ord algebra asso-ciated with spin representations of SO(2).)These are the simplest transformations which preserve the constraints on the connectionwithout restricting the parameter �(x; �), except by requiring that it is invertible everywhere.The superdifeomorphism symmetry is used to choose a coordinate system where the vielbeinis `super-Weyl 
at', that is, obtainable from the matrix� �am 0i��
a�� ��� � (14)by a super Weyl transformation. If one now chooses complex coordinates z; � with z = x1+ix2and � = �1+i�2, then changes of coordinates (z; �) 7! (~z; ~�) which preserve super Weyl 
atnessof the vielbein are what is known as superconformal: ~z and ~� are both superanalytic functionsof z and � [6], (so that ~z = f(z) + ��(z)~� =  (z) + �g(z) (15)with all four functions f(z); �(z);  (z); g(z) analytic) and also the di�erential operator D =@@� + � @@z transforms mutiplicatively withD = (D~�) ~D: (16)The nature of the transition functions from z; � to ~z; ~� demonstrates that the surface � hasthe structure of a particular kind of (1; 1)-dimensional complex supermanifold known as asuper Riemann surface.(The extra condition (16) means that the change of coordinates takesthe form ~z = f(z) + � (z)~� =  (z) + �pf 0(z) +  (z) 0(z): (17)For future reference, it may be observed that by setting  (z) to zero and ignoring � a con-ventional Riemann surface, known as the body of the super Riemann surface, is obtained.



118 Alice RogersA super Riemann surface with simply connected body is said to be simply connected, andsimilarly for any other topological attribute.)From the analysis above we see that the functional integral for the spinning string (equation(10)) reduces to an integral over the super moduli space of all possible super Riemann surfaces,and so one is led to a study of the nature of this space. Following Crane and Rabin [7], thefollowing picture emerges: three simply-connected super Riemann surfaces can be foundwhich are super extensions of the three simply connected Riemann surfaces, and then auniformisation theorem established to show that any other compact super Riemann surfacewithout boundary is a quotient of one of these three simply connected super Riemann surfacesby a discrete subgroup of the superconformal automorphism group. The starting point is theobservation that corresponding to any Riemann surface with spin structure a super Riemannsurface can be constructed with transition functions~z = f(z)~� = �pf 0(z); (18)where f is the transition function on the Riemann surface and the sign ofpf 0(z) is determinedby the spin structure. Since each of the three simply connected Riemann surfaces (the complexplane C , the complex sphere C � and the upper half plane U) has a unique spin structure, theyeach possess exactly one super extension of this nature, denoted SC , SC � and SU respectively.Crane and Rabin [7] use cohomological arguments to show that these are the only simplyconnected super Riemann surfaces, and hence establish their uniformisation theorem. Themoduli space corresponding to each genus and spin structure can then be investigated. Atgenus 0, the only possible super Riemann surface is SC � , while at genus 1 various toroidalcompacti�cations are possible; for even spin structures on the body, these compacti�cationsare parametrised by a single even parameter for even spin structures, so that the modulispace is (1; 0)-dimensional, while for the odd spin structure the moduli space has dimension(1; 1). Super Riemann surfaces of higher genus are obtainable as quotients of SU by a discretesubgroup � of the group of conformal automorphisms of the upper half plane which consistsof transformations of the standard form (17) with [7]f(z) = az + bcz + d (z) = 
z + �cz + d (19)where a; b; c and d are all real and even and satisfy ad � bc = 1 while 
 and � are real andodd. Now by the usual arguments, � must be isomorphic to the fundamental group of asurface of genus g, where g is the genus of the body of the super Riemann surface SU=�,and this group has 2g generators and one relation; thus, allowing for a freedom of overallconjugation, there will be 3(2g�2) even parameters to be chosen and 2(2g�2) odd parametersto be chosen to determine a particular �. Thus supermoduli space is (at least to the extentthat the corresponding result is true for standard Riemann surfaces) a �nite-dimensionalsupermanifold, and we see that the geometrical formulation of the spinning string given byHowe [5] leads eventually to the reduction of the functional integral for the spinning string toa �nite-dimensional integral. A further account of the geometry of super Riemann surfacesand its application to string theory may be found, for example, in [8, 9].
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Proc. of the 7th EWMmeeting, Madrid, 1995Universal measuring coalgebras:The points of the matterMarjorie BatchelorCambridge University, England1. IntroductionOne of the challenges modern theoretical physics has put to classical mathematics is thenecessity of �nding a satisfactory concept of manifold or point set which will accomodate theincreasingly varied requirements. Supersymmetry necessitated the introduction of superman-ifolds. String theories and �eld theories in general require the in�nite dimensional manifoldsof smooth maps. The geometric interpretation of non-commutative geometry is still puzzling.The purpose of this paper is to introduce the universal measuring coaglebra and to suggestthat many of these challenges can be met by this construction. It provides a solution toproblems of di�erential topology in supermanifolds and the spaces of maps. There is evidencethat it may give a satisfactory interpretation of quantum groups and similar objects. Moreoveras its construction is a universal one requiring only that the input objects are algebras it oughtto have applications to other categories which depend on a notion of function algebra. Finally,because of the strong built in �niteness properties possessed by coalgebras, this constructionin some sense encodes all �nite dimensional information.I will introduce measuring coalgebras, describe how they function as surrogate point sets,and how they can be used to get jet bundle information, in both the classical case of �nitedimensional manifolds, and the case of graded manifolds. A further slight generalizationallows one to get hold of the jet bundle of the manifold of smooth maps between (ordinaryor graded) manifolds. The �nal example I will give is the simplest one which demonstratesthe possibility of representing quantum groups as \transformation groups".2. De�nitions of CoalgebrasMotivation Every point set S comes equipped with a diagonal map S ! S� S taking apoint s to the pair (s; s). This map is used implicitly in the usual de�nition of multiplicationof functions on S: if f , g are two (say real valued) functions on S the product fg is de�nedby fg(s) = f(s)g(s):This de�nition depends evidently on multiplication in R, but equally on the diagonal maps! (s; s).The view I take is that the properties which de�ne the notion of point are the following:121



122 Marjorie Batchelor1. Points take values on functions; that is, they are linear functionals on a (given) algebraF of functions.2. Points are precisely those functionals s which satisfy the product rulefg(s) = f(s)g(s):determined by multiplication in R and the usual diagonal map.This is a viewpoint which generalizes easily, coalgebras providing sets equipped with gen-eralizations of the diagonal map, and measuring maps providing the idea of a product rule.De�nition A coalgebra is a linear space C together with a comultiplication� : C �! C 
 Cand a counit " : C �! Rsatisfying the following identities.C ����! C 
 C�??y ??y�
1C 
 C 1
����! C 
 C 
 C C ����! C 
 C�??y ??y"
1C 
 C 1
"���! CExamplesi C = Rm, �m = m
m, "m = 1. This is the coalgebra with point-like behaviour.ii C = Rm+ Rt, �m = m 
 m, "m = 1, �t = t 
 m + m 
 t, "t = 0. Observe thatcomultiplication of t resembles the product rule for derivations. Elements with thatcomultiplication are called primitive.iii C = Rk + Rh+ RE. The elements h, k are pointlike (as m in example i), and �E =k 
 E +E 
 h, "E = 0. This coalgebra is the one which arises in quantum groups.Notation Following Sweedler, the comultiplication �c will be written�c =X(c) c(1) 
 c(2):The coassociativity diagram allows us to write(�
 1)�c =X(c) c(1) 
 c(2) 
 c(3) = (1
�)�c:The counit diagram above states thatc =X(c) "(c(1))c(2) =X(c) c(1)"(c(2)):Pleasing property of coalgebras The de�ning property of tensor products makes iteasy to construct maps from tensor products not to them. The consequence of requiring thecomultiplication map to go \the wrong way" is that coalgebras have a very strong built in�niteness property: every element in a coalgebra C lives in a �nite dimensional subcoalgebraof C. This has a number of desirable consequences on which we can capitalize.



Marjorie Batchelor 1233. Measuring coalgebrasThis is the concept of maps between algebras which satisfy a product rule.De�nition Let A, B be algebras (over R for example) and let C be a coalgebra. A linearmap 	 : C �! HomR(A;B)is said to measure if 	(c)(a1a2) =P(c)	(c(1))(a1)	(c(2))(a2) and 	(c)(1A) = "(c)1B.Examplesi If C is the coalgebra of example i above, then a linear map 	 : C ! HomR(A;B) measuresif and only if 	(m) is an algebra homomorphism.ii If C is the coalgebra of example ii above, a linear map 	 : C ! HomR(A;B) measures ifand only if 	(m) is an algebra homomorphism, and 	(t) is a derivation with respectto 	(m).Not only are there familiar examples, then, of measuring coalgebras, but also there existsa \maximal" measuring coalgebra for a given pair (A;B) of algebras.De�nition A measuring coalgebra � : P ! Hom(A;B) is a universal measuring coalgebraif given any other measuring coalgebra 	 : C ! Hom(A;B) there is a unique map (ofcoalgebras) � which makes the following diagram commute.P ����! Hom(A;B)�x??CThe existence of universal measuring coalgebras depends on the pleasing property of coal-gebras. Speci�cally, that �niteness property guarantees that in the category of coalgebras,coproducts and colimits exist. This is enough to construct a suitable measuring coalgebra Pwith the required properties. Such objects are unique by general categorical principles.Notation The universal measuring algebra for the pair (A;B) will be denoted P (A;B).4. Applications to manifolds and graded manifoldsThe starting point for this discussion has been that a point set S is a subset of linear func-tionals on a (given) function algebra F . The idea then is to replace S by P (F;R). As atest piece we can calculate P (C1(M);R) where M is a smooth manifold and C1(M) is thealgebra of smooth functions on M .We know some elements of P (C1(M);R) already. If m is a point in M , then the as-signment f ! f(m) is an algebra homomorphism. Thus by example i above, Rm !Hom(C1(M);R) measures, and by the universal property of P (C1(M);R), Rm is includedin P (C1(M);R). Denote the image of Rm under this inclusion by T 0m.Similarly, if 
 is a tangent vector to M at m, so that 
 is in the tangent space TmM , theassignment t ! 
 determines a measuring map from Rm+ Rt! Hom(C1(M);R). In this



124 Marjorie Batchelorway Rm + TmM can be considered as a measuring coalgebra for (C1(M);R). Denote theimage of this measuring coalgebra in P (C1(M);R) by T 1m.Higher order tangent spaces can be treated similarly and give an increasing union ofsubcoalgebras T km of P (C1(M);R) as in Figure 1.
Figure 1:Result P (C1(M);R) = Xm2M[k T km:Each subcoalgebra T km is dual to the �bre of the kth jet bundle of M at m The sum overpoints in m is direct.Thus in the familiar case of smooth manifolds, this entirely algebraic construction recoversall the jet bundle information of the manifold M. It is therefore an attractive candidate touse to recover jet bundle information when conventional manifold techniques fail to apply. A�rst application is to graded manifolds.Graded manifolds are manifolds whose function algebra includes anticommuting elements,that is, functions f , g such that fg = �gf . They are de�ned as follows.De�nition A graded manifold is a pair (M;A) where M is an ordinary smooth manifold,and A is a sheaf of graded commutative algebras such that there is an atlas of open charts onM such that over such an open set the sheaf A is isomorphic to the sheaf C1(:)
�Rn. Thebasis f�1; : : : ; �ng of Rn which generates �Rn are refered to as the odd coordinate functionson (M;A).By analogy with the previous example the universal measuring coalgebra P (A(M);R)ought to provide a picture of the (dual to) the jet bundle for the graded manifold (M;A). Itdoes. The only novelty is that in addition to conventional tangent vectors @@xi , correspondingto conventional coordinate functions on M , T 1m contains odd tangent vectors @@�j correspond-ing to the odd coordinate functions. The higher order tangent spaces contain suitable mixedderivatives of odd and ordinary coordinates. The result and the picture are still the same.The only novelty is that each T km comes with a Z2 grading, T km = T km;0 + T km;1, and containsderivatives of both odd and even coordinates. (See Figure 2).



Marjorie Batchelor 125Result P (A;R) = Xm2M[k T km:This idea was exploited extensively by Kostant in his work on graded manifolds.
Figure 2:5. Applications to the manifold of maps between manifoldsLet M and X be manifolds. It would seem that the above recipe for obtaining jet bundleinformation about the manifoldM(X;M) of smooth maps from X toM would be a very un-promising one: to start withM(X;M), form C1(M(X;M)), and then P (C1(M(X;M));R)is not an attractive task. Nonetheless, measuring coalgebras do provide simple and easy accessto the jet bundle ofM(X;M) through the following trick.There are two key observations.1. If * is a point, then R= C1(�).2. M =M(�;M).Thus, since the recipeP (C1(M);R) = P (C1(M); C1(�)) �! Hom(C1(M); C1(�))gives a satisfactory account of jet bundle information for M =M(�;M), it is reasonable topostulate P (C(M); C1(X)) �! Hom(C1(M); C1(X))as a candidate for the dual jet bundle ofM(X;M). In fact, if one de�nes the cocommutativepart Pc(C(M); C1(X)) of P (C(M); C1(X)),Pc(C1(M); C1(X)) = fp 2 P (C1(M); C1(X)) :X(p) p(1) 
 p(2) =X(p) p(2) 
 p(1)g



126 Marjorie Batchelorthen Pc(C1(M); C1(X)) does very well as a candidate for the dual jet bundle in thatthe picture is exactly the same as in the case of ordinary manifolds, and it contains mostconstructions reasonably expected to be elements of the dual jet bundle.Resulti If � : X �!M is a smooth map then R� is a subcoalgebra of Pc(C1(M); C1(X)).ii If p : TM �!M is the tangent manifold ofM with its projection ontoM , let � : X ! TMbe a smooth map with p� = �. Then if R�+R� is the coalgebra of example ii, with �point-like and � primitive, R�+R� is a measuring subcoalgebra of Pc(C1(M); C1(X)).(See Figure 3 ).iii Pc(C1(M); C1(X)) = X�:X!M smooth[T k� :Here T 0� = R�, and T 1� is the set of all derivations from C1(M) to C1(X) with respectto �: that is all linear functionals � satisfying�(fg) = �(f)�(g) + �(f)�(g):By inspecting the e�ect of composing � with the evaluation at a point x in X , it canbe seen that all such � are maps from X to TM such that � = �� . (See Figure 4).
Figure 3:Property iii is a consequence of the fact that Pc(C1(M); C1(X)) is a cocommutativecoalgebra all of whose simple subcoalgebras are pointlike. For a long time the attractivepossibilities of including the not necessarily cocommutative parts of P (C1(M); C1(X)) wereneglected. However, using the non cocommutative bits gives hope of representing quantumgroups as \genuine" transformation groups. This brings the story up to my current interests.I will �nish by giving one example of the type of non cocommutative measuring coalgebrawhich may be useful in representing quantum groups and related objects.



Marjorie Batchelor 127
Figure 4:6. A non cocommutative measuring coalgebraLet A = B = R[z], the polynomial algebra over C on one generator. Let C be the coalgebraC = RE+Rk+Rh of example iii in the �rst section.De�ne a linear map ! : C ! Hom(R[z];R[z]) by setting!h(z) = 0; !k(z) = z; !E(z) = 1:In order for ! to be a measuring map it must be that !h and !k are algebra homomorphisms,so that !h(zn) = 0; n > 0; !h(1) = 1; !k(zn) = zn for all n:Moreover inductively it can be shown that!E(zn) = zn; n > 0; !E(1) = 0:It is curious that the absence of the coe�cient one normally expects of di�erentiation re-sults in the assymetry in the product rule (the measuring condition). However, the behaviouris typical of di�erence operators, as opposed to di�erential operators, and there are manyvariants.It is also curious that the algebraic properties which enable such di�erence operators toexist in this case arei) The image of !k � !h is the ideal of R[z] generated by the single generator z, andii) any element of R[z]z can be written uniquely in the form p(z)z.The interrelations between conformal �eld theories, loop algebras and quantum groupsare an intriquing �eld of study. It is my belief that the algebraic properties above are at theroot of the connection between quantum groups and conformal �eld theories.
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Moduli SpacesAn Interdisciplinary Workshop organized by Sylvie PaychaThis session was of an experimental nature; three short twenty minutes talks were tobe given on the topic of moduli spaces in relation to the di�erent topics of the sessions ofthe conference, namely one by Caroline Series (given by Tan Lei since Caroline Series wasunable to attend the conference) on moduli spaces and dynamical systems, one by Rosa MariaMir�o{Roig on moduli spaces and classi�cation problems in algebraic geometry, one by SylviePaycha on moduli spaces and quantum �eld theory. Laura Fainsilber spontaneously gave atalk on moduli spaces and number theory of which she kindly gave a brief account for theseproceedings.This interdisciplinary session on moduli space came out to be a success; it lead to livelydiscussions and even to a spontaneous talk (mentioned above). It was followed by a discus-sion session on moduli spaces where we tried to understand better the di�erent points ofviews on moduli spaces presented in the di�erent talks. There was clearly a need for suchinterdisciplinary discussions within this EWM conference in Madrid and we hope that furtherinterdisciplinary sessions will be organised in the future! Sylvie Paycha





Proc. of the 7th EWMmeeting, Madrid, 1995Moduli spaces and conformal dynamicsCaroline SeriesWarwick University, Englandcms@maths.warwick.ac.uk1. IntroductionTo understand moduli we �rst have to understand the meaning of a complex structure on asurface. A Riemann Surface is a surface (i.e. a 2-manifold) S with local charts to C such thatthe overlap maps between charts are complex analytic. Remember that a complex analyticmap locally preserves angles and expands or contracts distances. In fact, using Taylor seriesyou see that locally it looks like z 7! f(a) + f 0(a)(z � a):In other words, it is just an a�ne map z 7! cz + d for some c; d. This map is a combinationof a translation, rotation and similarity. A map like this which preserves angles is calledconformal. (See Sylvie Paycha's paper). In fact a map of a subset of C is conformal if andonly if it is complex analytic. Two surfaces S1 and S2 are said to be conformally equivalentif there is a homeomorphism f : S1 7! S2 such that the maps f induces between charts arecomplex analytic (equivalently conformal). We can thus talk about the conformal or complexstructure of a surface.2. The problem of moduliThe problem of moduli is to describe the di�erent conformal (or complex) structures therecan be on a �xed topological surface.Facts (which we are not going to prove.)The complex structure of a surface of genus g can be described by 3g�3 complex parameters(equivalently by 6g�6 real parameters). The set of all possible moduli can be given, roughlyspeaking, the structure of a 3g � 3 dimensional complex manifold.NoteThere is often confusion between Teichm�uller space and Moduli space. Both classify thepossible complex structures on a surface. You get Teichm�uller space when you �x whatis called a marking on the surface. This means that on each of the two surfaces to becompared you specify that certain curves are generators of the fundamental group. Whenyou are matching the two surfaces your homeomorphism is required to carry one set of markedgenerators into the equivalent set on the other surface. You getModuli space when you ignorethe marking and only ask for a homeomorphism between the surfaces, not worrying about131



132 Caroline Serieswhat it does to the generating curves. Moduli space is a quotient of Teichm�uller space bythe action of the Mapping Class Group. This is the group of di�eomorphisms of the surface,modulo di�eomorphisms isotopic to the identity.3. Two �rst examplesThe �rst step in classifying conformal structures is the well known but still remarkable Rie-mann Mapping Theorem, �rst proved fully by Osgood in 1900. It states:Any simply connected open subset U � C which has at least 2 points in its boundary isconformally equivalent to the unit disc D = fz 2 C : jzj < 1g.In other words there is an analytic bijection between U and D . (The inverse of an analyticmap is automatically analytic.) Recently Sullivan and Rodin gave a very interesting andmore constructive proof of this theorem which allow one, given the region U , to implementthe map easily by computer.The next simplest regions to classify are annuli. By de�nition, a (conformal) annulus is abounded open subset of C whose complement has 2 connected components. By methodssimilar to those used in the Riemann mapping theorem it is proved (by Koebe)that anyconformal annulus can be mapped by an analytic bijection to the regionfz 2 C : 1=r < jzj < 1g for some r > 1 (r might be in�nity):Thus to solve the problem of moduli for annuli, we only have to determine when there isa conformal map between two of these standard regions.Theorem 1 If r 6= s, there is no complex analytic bijection between the regions fz 2 C :1=r < jzj < 1g and fz 2 C : 1=s < jzj < 1g .ProofSuppose f were such a map. We may assume jf(z)j ! 1 as jzj ! 1. Letg(z) = log r log f(z)� log s log zThen h(z) = Reg(z) is harmonic and vanishes on the circles jzj = 1, jzj = 1=r. By themaximum principle, h � 0. Therefore g is also constant (by the Cauchy Riemann equations).However, if we make a circuit round jzj = 1=r , g changes byi[log r � 2� � log s � 2�]:Since g is constant the change is 0 and hence r = s.The real number log r > 0 associated to an annulus by this result is therefore unique andis called the modulus of the annulus. It completely speci�es the annulus up to conformalhomeomorphisms. The moduli space flog r 2 R : r > 1g = ]0;1] does not quite �t into ourpicture of moduli space being a complex variety because an annulus is not a closed surface,neverthless it gives us a feel for what moduli are like.



Caroline Series 1334. Quasi-conformal mapsA very important idea in complex dynamics is the idea of a quasi-conformal map. This is amap which is not conformal but which stretches and shrinks with \bounded distortion". It iseasy to write down a simple quasi-conformal map between annuli of di�erent moduli { justmap the annuli to their standard position and then stretch the smaller one evenly along radiito �t onto the larger. It is a fundamental theorem of Teichm�uller that for any map betweentwo surfaces, there is always a homotopic map of \least stretch" and that the surface canbe divided into rectangles or annuli on each of which the map acts like one of these simplestretches.5. The general caseThe key to solving the moduli problem for a general topological surface is the famous Uni-formisation Theorem proved by Koebe in 1907. It states that any simply connected Riemannsurface is conformally equivalent to exactly one of C , C [1, D .We can use it to classify all Riemann surfaces by the following two facts, which are not hardto prove from the de�nitions:1. The universal covering space of a Riemann surface has a complex structure and is againa Riemann surface.2. The covering maps are complex analytic homeomorphisms.Thus we have only to list all the possible covering maps in the three cases to �nd all possi-bilities. A covering map must be a �xed point free analytic homeomorphism of the universalcover onto itself. In the case of C [ 1 there are no suitable analytic homeomorphisms be-cause all of them have �xed points. In case of D the maps are exactly the linear fractionaltransformations which map the unit disc to itself without �xed point in the disc. These arethe same as the isometries of 2-dimensional hyperbolic geometry. Thus it is possible to puta hyperbolic metric on the quotient surface and measure the moduli in terms of hyperbolicgeometry measurements. This works whenever the surface we want has genus � 2. If we hada bit more time we could explain exactly what the 6g � 6 real measurements for a surfaceof genus g are. Finally in case of C the only �xed point free conformal homeomorphismsof C to itself are translations z 7! z + b, where b is complex. The most interesting case iswhen the covering group is Z2 and the quotient C =Z2 is a torus. After scaling, translatingand rotating (which are all analytic homeomorphisms) we can assume that the group G� ofcovering transformations is generated by z 7! z + 1 and z 7! z + � for some complex � withIm� > 0. We have to �nd out when there is an analytic homeomorphism between two toriC =G� and C =G� . Suppose f were such a map. Let ~f be the lift of f to C . Then ~f must beperiodic relative to the lattice points m+ n�;m; n 2Z. It is not hard to show that the onlypossibilty is that f maps the lattice points m + n�;m; n 2 Zto the points q + r�; q; r 2 Zand hence that � = a�+bc�+d for some integers a; b; c; d with ad � bc = 1. This gives us the wellknown picture that the moduli space for tori is the upper half plane (the � plane ) quotientedby the action of the group SL(2;Z). (See Rosa Maria Mir�o Roig's paper).A good reference for this material is G. Jones and D. Singerman, Complex functions, Cam-bridge University Press, 1987.



134 Caroline Series6. Moduli in complex dynamicsHow do moduli arise in complex dynamics? In complex dynamics one is studying a rationalfunction f mapping the Riemann sphere C [1 to itself . The Riemann sphere divides intothe Julia set, on which the grand orbits of f are dense, and the Fatou set, on which thegrand orbits are either discrete (in attracting or parabolic basins) or leaves of dynamicallyde�ned foliations (in Siegel discs, Herman rings and superattracting basins). Pick a connectedcomponent 
0 of the Fatou set on which the action of the map is discrete. It makes sense toform the quotient 
0=f . This is the orbit space in which all points in the same f orbit areidenti�ed. Because the map was acting discretely, the quotient is a Riemann sufrace, usuallywith some branch points. A lot of use has been made of the idea that we can relate di�erentrational maps by deforming these quotient surfaces by using quasi-conformal maps. We canalso investigate the space of all maps f with a given combinatorial structure by lookingat the moduli spaces of the quotients. Sullivan proved a very fundamental theorem, thenon-wandering domain theorem, by using the fact that the moduli spaces for each quotientare �nite dimensional. In my own work the rational map f is replaced by a group � oflinear fractional transformations. Looking at where the group orbits are discrete or not, theRiemann sphere still splits into a \Julia set" and a \Fatou set". The quotients 
0=� areRiemann surfaces. We are interested in studying the relation between the moduli of thesurface and the complex parameters which go into de�ning the generators of the group. Thisgives some very interesting and concrete pictures of Teichm�uller space.7. An application to complex dynamicsWe end with a nice application of the moduli of annuli to complex dynamics. In studying theMandelbrot set for cubic polynomials, Branner and Hubbard had a situation in which theyhad an in�nite set of nested annuli, and they needed a criterion for whether the intersectionconsisted of one or many points. They used 2 basic results about annuli:1. Gr�otzsch's inequality: Suppose a sequence An of open annuli are nested inside an openannulus A, each winding once around the hole in A. ThenXmodAn � modA2. If A is an open bounded annulus of in�nite modulus the bounded component of thecomplement (i.e. the hole) consists of one point.Thus if you can �nd a sequence An of nested annuli such that the sum of their moduliis in�nite, you know that the hole in the middle of the nest consists of just one point.



Proc. of the 7th EWMmeeting, Madrid, 1995Moduli spaces and path integralsin Quantum Field TheorySylvie PaychaUniversit�e Blaise Pascal, Aubiere, Francepaycha@ucfma.univ-bpclermont.frWarning: These notes are informal notes which are only meant to give a hint as to thevariety ot topics the investigation of moduli spaces in relation to quantum �eld theory canlead to.1. Moduli space of a Riemann surfaceThis section is closely related to Caroline Series' paper on moduli spaces and the reader isreferred to the references therin concerning the contents of this section.Let � be a smooth compact surface without boundary of genus p. The purpose of this�rst section is to de�ne the moduli space of such a surface. We shall need the notions ofRiemannian metric and conformal structure.Riemannian metrics Let p be a point on � and let (x1; x2) be a system of local coordinatesat point p on �. A Riemannian metric on � at point p is de�ned locally at point p by asymmetric two by two matrix (gab) with strictly positive determinant. A Riemannian metricis a global object ( a covariant symmetric two tensor on �) but its local description dependson the choice of local coordinates. If f is a di�eomorphism of the surface � that takes(x1; x2) around p to another local system of coordinates (y1; y2) around f(p), then locallyga;b transforms to (f�g)ab � g0abwhere g0ab = Xc;d=1;2 gcd dxcdya dxddyb :This de�nes an action of the group Diff(�) of di�eomorphisms on the space Met(�) ofRiemannian metrics on �:� : Diff(�)�Met(�) �! Met(�)(f; g) 7�! f�g:The metric is a tool to measure lengths of curves and areas of surfaces on the manifold.In particular, since � is compact, we can de�ne the area of � for a given metric g byAg(�) � Z�pdetg135



136 Sylvie Paychaas well as the area A(x; g) � Ax�g(�) (�)of x(�) where x is a map that embeds � in Rd.One can stretch or shrink the metric by multiplying it by a constant factor g ! kg, k > 0thus multiplying the area Ag(�) by the same factor k. One can also multiply the metricpointwise g(p)! (e�g)(p) � e�(p)g(p) by a strictly positive function on �. Letting Met(�)denote the space of Riemannian metrics on � (it is an in�nite dimensional space) and settingW (�) � fe�; � 2Map(�;R)g, we thus de�ne an action of W (�) on Met(�):� : W (�)�Met(�) �! Met(�)(e�; g) 7�! e� � g:The conformal class of a given metric g is the set of Riemannian metrics[g] � fe�g; � 2Map(�;R)g. A conformal transformation of � is a di�eomorphism f of � which preserves the conformalclass of the metric, i.e such that f�g = e�g where � is a real function on �.Given a metric g on � and a local coordinate system (x1; x2) at point p 2 �, one candiagonalise the metric and thus �nd another system of coordinates (y1; y2) in which themetric matrix takes the form h e�(p)�1 00 e�(p)�2 i where �1; �2 2 R. Then any metric e�g in theconformal class of g is also diagonal in this coordinate system and its matrix takes the formh e��1 00 e��2 i. The system of coordinates (y1; y2) is called isothermal for the conformal class[g]. Setting z � y1 + iy2, one can equip � with a complex structure. There is in fact a oneto one correspondence between the set C(�) of complex and the set Conf(�) of conformalstructures on � .We �nally have the following isomorphisms:Met(�)=W (�) ' C(�) ' Conf(�):The action � of the di�eomorphism group on Met(�) induces an action on Conf(�) (andhence on C(�) ), setting for f 2 Diff(�), f�[g] = [f�g]. In general there are di�eomorphismswhich do not preserve a given complex (or conformal) structure; they take a given complex (orconformal) structure to another one (see Caroline's talk). These two complex (or conformal)structures are then called equivalent.The moduli space Mod(�) of � is the set of non equivalent complex (or conformal) struc-tures on �. It can be described as a quotient space in four equivalent ways:C(�)=Diff(�) ' Conf(�)=Diff(�)' Met(�)=W (�)=Diff(�)' Met(�)=Diff(�)=W (�)where Diff(�) acts via the action � on the space of metrics and W (�) via the action �.In what follows, we want to interpret the moduli spaceMod(�) in the framework of stringtheory in terms of the quotient space of a space of paths by the action of a symmetry group.



Sylvie Paycha 1372. Moduli space and path integralsThe space of pathsHere, we shall see � together with a �xed Riemannian metric g on � and an embeddingx : � ! Rd as a path descibed by a loop (or closed string) moving in space time Rd. Thestarting point and the end point of its trajectory, which would introduce boundaries to thesurface described by the loop are taken at in�nitely distant times so that we can assumeeverything happens as though the surface � were boundaryless and compact! If we considerseveral interacting loops, i.e loops meeting up together and splitting again, the resultingsurface can be of any genus p > 0.The space P of paths can therefore be seen as the product space Emb(�)�Met(�) ofthe space Emb(�) of embeddings of � into Rd with the space of Riemannian metrics on aboundaryless compact smooth surface � of any genus.Diff(�) as a symmetry groupA classical string evolves acording to a minimal energy principle and describes a surfacewith minimal area A(x; g) as de�ned in (�). This area is also called the classical action orenergy.Since the area does not depend on the chosen parametrization of the surface �, this actionA(x; g) is invariant under the action of the di�eomorphism group Diff(�), i.eA(x � f; f�g) = A(x; g):We see this group as a symmetry group for the classical action or energy.In fact, this action is also invariant under the action of W (�) so that the symmetry groupSym is in fact a larger group, the smallest one containing both W (�) and Diff(�), whichwe shall not describe in detail here.Moduli spaceDi�eomorphisms act trivially on Emb(�) via composition (x ! x � f; f 2 Diff(�); x 2Emb(�)) and W (�) does not act on Emb(�) so that the action of Sym(�) on Emb(�)reduces to that of Diff(�). Combining this action with the action of Sym(�) on the spaceof Riemannian metrics, one can de�ne an action of the symmetry group Sym on the spaceof paths P = Emb(�)�Met(�).We shall call two paths equivalent when there is an element of the symmetry group thattransforms one into the other. The space of non equivalent paths is thus described by\P=Sym = (Emb(�)=Diff(�))� (Met(�)=Sym(�)) = (Emb(�)=Diff(�))�Mod(�)"Since the moduli space coincides withMet(�)=Sym(�), we see how it arises here as a subspaceof the space of non equivalent paths P=Sym(�).Path integralsIn quantum �eld theory one cannot "see" paths but only "mean values" over the space ofpaths, namely observables. An observable is the mean value < O > of a function O : �! Rwith respect to a formal measure on the space of paths:< O >� Z�1 ZP O(p)e�A(p)dp



138 Sylvie Paychawhere A(p) is the classical action (or energy) of the theory-in the case of strings it is the areaA(x; g) given in (�)- "dp" is a formal volume measure on the in�nite dimensional space ofpaths P , and Z is the normalising constant Z = RP e�A(p)dp.Giving a meaning to such integrals on in�nite dimensional manifolds is extremely di�cultand the description of path integrals gives rise to problems of a geometric or topologicalnature, which a priori can look very di�erent from the original one, such as looking forinvariants of manifolds [D] (see also the recent work by Seiberg and Witten on the subjectreviewed in [B])In the case of strings mentioned above, an interpretation of the partition function\Z = ZEmb(�)�Met(�) e�S(x;g) dxdg00was �rst suggested in [P] (see also [Po] about this interpretation ) and further investigatedby many authors using algebraic-geometric techniques (see e.g [Bo], [Ph] ,[S])AnomaliesWhenever the function O is invariant under the symmetry group, one can hope to reducethe path integral given by < O > to an integral on the moduli space (which is sometimes�nite dimensional as in the case of strings (see C.Series' talk)), when seen as a quotient ofthe space of paths via the action of the symmetry group, since the latter leaves the classicalenergy A(p) arising in this integral invariant.However, there can be an obstruction to doing this if the "formal volume measure" denotedby "dp" on the path space is not invariant under the action of the symmetry group. Thisis the case in the example considered above where "dg" is not invariant under Sym(�); thesymmetry we have at the classical level (S(x; g) is invariant under Sym(�) is " broken" atthe quantised level when "integrating" w.r.to the "measure " "dx dg" on the space of paths.This gives rise to anomalies, which can be interpreted as topological and geometric ob-structions on a certain line bundle built on moduli space, namely a determinant bundle (seee.g [ASZ],[Bo],[BF],[F]). The fact that there is a determinant line bundle involved is relatedto the fact that a transformation of the above "path integral" via the action of the groupgives rise to a jacobian determinant, also called the Faddeev-Popov determinant [BV]. In thecase of stings mentioned above, the (conformal) anomaly arises from the non invariance ofthe formal measure "dg" on the space of metrics under the action of W (�) [F].References[ASZ] O.Alvarez,I.M.Singer, B.Zumino, Gravitational anomalies and the family's index theo-rem, Comm. Math. Phys. 96 (1984), 409-417[B] D. Bennequin, Monopoles de Seiberg-Witten et conjecture de Thom, S�eminaire Bour-baki, 807 (Nov.1995)[Bo] J.B.Bost, Fibr�es d�eterminants, d�eterminants= r�egularis�es et mesures sur les espacesde modules des courbes complexes, S�eminaire Bourbaki, expos�e 676, Ast�erisque 152-153(1987), 113-149[BF] J.M. Bismut, D.Freed, The Analysis of elliptic families I , Comm. Math. Phys. 106(1986) ,157-176
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Proc. of the 7th EWMmeeting, Madrid, 1995Notes on moduli spaces inAlgebraic GeometryRosa M. Mir�o{RoigUniversitat de Barcelona, Spainmiro@cerber.ub.es1. IntroductionModuli spaces are one of the fundamental constructions of Algebraic Geometry. They arisein connection with classi�cation problems and, although it is a fairly delicate subject, I willtry to describe it in an elementary fashion.Roughly speaking a moduli space for a collection of objects A and an equivalence relation� is a classi�cation space, i.e. a space (in some sense of the word) such that each pointcorresponds to one and only one equivalence class of objects. Therefore, as a set, we de�nethe moduli space as equivalence classes of objects A= �. In our setting the objects arealgebraic objects, and because of this we want an algebraic structure on our classi�cation set.Finally we want our moduli space to be unique (up to isomorphism).So the basic ingredients for a moduli problem are a collection of objects A, an equivalencerelation � on A and a concept of family of objects of A parametrized by an algebraic variety(or a scheme) S. (See the lectures on Algebraic Geometry for the precise de�niton of algebraicvariety and scheme.) Such a family consists of a collection of objects Xs, one for each s 2 S,which �t together in some way corresponding to the structure of S. The precise de�nitionof family depends on the particular moduli problem; however, in all cases, it satis�es thefollowing properties:1. A family parametrized by the variety fptg (consisting of a single point) is a single objectof A.2. There is a notion of equivalence of families parametrized by any given variety S, whichgives the equivalence relation on A when S = fptg; we denote this relation again by �.3. For any morphism ' : S 0 �! S and any family X parametrized by S, there is aninduced family '�X parametrized by S 0. Furthermore we have the functorial properties:1�S =identity, (' )� =  �'�; and it is compatible with �, i.e. if X � X 0 then'�X � '�X 0.0These notes are intended to support our cross disciplinary discussion on moduli spaces. Many peoplehave made important contributions without even being mentioned here. If I have made wrong attributions Iapologize for that. In no case do I claim that any idea here at all originates from me.141



142 Rosa M. Mir�o{RoigThe moduli problem consists in giving to A= � a structure of algebraic variety whichre
ects the structure of families of objects of A.2. Fine moduli spaces, coarse moduli spaces and quotientsWe consider the contravariant functor F : (V arieties) �! (Sets), S 7�! F(S), where F(S) isthe set of equivalence classes of families parametrized by the variety S. Suppose that M isan algebraic variety with underlying set is A= �. For any family X parametrized by S, wedenote by �X : S �!M the map given by �X(s) := [Xs] where [Xs] is the equivalence classof the object Xs.De�nition A �ne moduli space for a given classi�cation problem is a pair (M;	) whichrepresents the functor F .Let M be a variety and 	 : F �! Hom(:;M) the natural transformation given by	(S)(X) = �X for any variety S and any family X parametrized by S. By de�nitionthe pair (M;	) represents the functor F if 	 is an isomorphism of functors.Remark 1. From the de�nition it easily follows that the underlying set of the variety M isA= �.Remark 2. If a �ne moduli space exists for a given classi�cation problem, then it is unique(up to isomorphism).The morphism 1M 2 Hom(M;M) determines, up to the equivalence relation �, a familyU 2 F(M) which gives us the following alternative de�nition:De�nition A �ne moduli space for a given classi�cation problem consists of a variety Mand a family U parametrized by M such that, for every family X parametrized by S, thereis a unique morphism 	 : S �!M with X � 	�U . The family U is called a universal familyfor the given problem.Unfortunately there are very few classi�cation problems for which a �ne moduli spaceexists and it is necessary to �nd some weaker conditions which nevertheless determines aunique structure of algebraic variety on M .De�nition A coarse moduli space for a given classi�cation problem consists of a varietyM together with a natural transformation 	 : F �!Hom(:;M) verifying:1. 	(pt) is bijective,2. For any variety N and any natural transformation ' : F �!Hom(:; N), there exists aunique natural transformation � : Hom(:;M)�!Hom(:; N) such that ' = �	.Remark 3. From the de�niton it easily follows thatM is a variety with underlying set A= �.Remark 4. If a coarse moduli space exists for a given classi�cation problem, then it is unique(up to isomorphism).Remark 5. A �ne moduli space for a given classi�cation problem is always a coarse modulispace for this problem but, in general, not vice versa. In fact, there is no a priori reason whythe map 	(S) : F(S)�!Hom(S;M) should be bijective for varieties S other than fptg.



Rosa M. Mir�o{Roig 143In the last part of this section we introduce the notion of categorial quotient of a varietyby the action of a group and we will explain its connection with moduli problems.De�nition Let G be an algebraic group acting on a variety X . A categorial quotient ofX by G is a pair (Y; ') where Y is a variety and ' : X �! Y is a morphism such that:1. ' is constant on the orbits o(x) = fgx; g 2 Gg � X of the action;2. For any variety Z and for any morphism  : X �!Z which is constant on orbits, thereis a unique morphism g : Y �!Z such that g' =  .If in addition '�1(y) consists of a single orbit for all y 2 Y , we call (Y; ') an orbit space.Remark 6. A categorial quotient is unique up to isomorphism and it exists in general cir-cumstances. (For instance, if G is a reductive group acting on an a�ne variety X ; or if G isa reductive group acting on a projective variety X and we restrict our attention to the opensubset Xss � X of semistable points of X .)To relate categorial quotients to moduli spaces we need to introduce some extra de�nitions.De�nition For a given moduli problem, a family X parametrized by a variety S is saidto have the local universal property if for any family X 0 parametrized by S0 and any points 2 S0, there exists a neighbourhood U of s such that X 0jU is equivalent to the family inducedfrom X by some morphism U �! S.Proposition 1 Suppose that, for a given moduli problem, there exists a familyX parametrizedby S having the local universal property. Suppose that a group G acts on S and that Xs � Xtif and only if s and t belongs to the same orbit of this action. Then:1. Any coarse moduli space is a categorial quotient of S by G;2. A categorial quotient of S by G is a coarse moduli space if and only if it is an orbitspace.More details on �ne moduli spaces, coarse moduli spaces and quotient can be found, forinstance, in [MFK], [MS] or [N].3. ExamplesAs particular examples of moduli problems, we will brie
y discuss the three following cases:1. Hilbert schemes;2. The moduli space for the isomorphism classes of smooth curves of genus g;3. The moduli space for stable vector bundles with given Chern classes on a projectivevariety X .



144 Rosa M. Mir�o{RoigExample 1Let Pr be the r-dimensional projective space over a �eld k. The �rst classi�cation problemthat we will deal with is the classi�cation problem for closed projective subschemes X � Prand we will see that there exists a �ne moduli space for such a classi�cation problem. Roughlyspeaking our objects will be closed subschemes ofPr with given Hilbert polynomial p(t) 2 Q[t],the equivalence relation will be the equality and we have the following notion of family:De�nition A 
at family of closed subschemes of Pr parametrized by a k-scheme S is aclosed subscheme X � PrS = Prx S such that the morphism X �!S induced by the projectionPrS = Prx S �! S is 
at.It is an important fact that 
at families PrS = Prx S � X �! S of closed subschemesof Pr parametrized by a connected k-scheme S have all their �bres with the same Hilbertpolynomial.We �x an integer r and a polynomial of the form p(t) = Pri=0 ai�t+ri � 2 Q[t] where ai'sare integers. We consider the contravariant functorHilbrp(t) : (k � schemes) �! (Sets)where Hilbrp(t)(S) := f
at families of closed subschemes of Pr with Hilbert polynomial p(t)parametrized by Sg. In 1960, A. Grothendieck proved (See [G] or [M]):There is a unique projective schemeHilbrp(t) which parametrizes a 
at family, Pr x Hilbrp(t) �W ��! Hilbrp(t), of closed subschemes of Pr with Hilbert polynomial p(t), and having the fol-lowing universal property: for every 
at family, Pr x S � X f�! S, of closed subschemes of Prwith Hilbert polynomial p(t), there is a unique morphism g : S �!Hilbrp(t), called the classi-�cation map for the family f, such that � induces f by base change; i.e. X = S x Hilbrp(t)W .Following the de�niton of �ne moduli space � is called the universal family.In the usual language of categories the pair (Hilbrp(t); �) represents the functor Hilbrp(t)and the classi�cation problem for projective subschemes has a �ne moduli space.Since any closed subscheme of Pr with Hilbert polynomial p(t) = �t+nn � is a linear subspaceof Pr of dimension n, we have:Hilbr(t+nn ) = Grass(n + 1; r+ 1):Hence the Hilbert schemes can be considered as generalizations of the grassmannians; i.e.varieties parametrizing all (n+1)-dimensional vector subspaces of a given (r+1)-dimensionalvector space V .Remark 7: We know the existence of the Hilbert scheme but its local and global propertiesare very far from being understood; even for the case of projective space curves. I will notdiscuss here either recent contributions or open problems.Example 2We consider the set fC�g of smooth curves of genus g and we ask whether the setMg of suchcurves, up to isomorphism, may be given the structure of an algebraic variety in a natural



Rosa M. Mir�o{Roig 145way (such is the case for g=1, where the j-invariants form an a�ne line). To begin with, wede�ne a 
at family of smooth curves of genus g with base S to be a variety V and a 
atmorphism � : V �! S such that for each point s 2 S the �ber Vs := ��1(s) is isomorphic toC� for some �. The best way to specify the algebraic structure on Mg would be to require itto be a universal parameter variety for families of curves of genus g, in the following sense:we require that there be a 
at family X �! Mg of smooth curves of genus g such that forany other 
at family f : V �! T of smooth curves of genus g, there is a unique morphismg : T �!Mg such that V = g�X . In this case we call Mg a �ne moduli space for the curvesfC�g.Unfortunately, there are very few classi�cation problems for which a �ne moduli spaceexists. One of the reasons why the universal family X �!Mg does not exist is that there arenontrivial 
at families of smooth curves of genus g, all whose �bres are isomorphic to eachother. Hence it is necessary to �nd some weaker condition which nevertheless determines aunique algebraic structure onMg. This problem was settled by D. Mumford. He proved thatfor g � 2 there is a coarse moduli space Mg which has the following properties (See [M];Theorem 5.11):1. The set of closed points of Mg is in one-to-one correspondence with the set of isomor-phism classes of smooth curves of genus g;2. if f : V �! T is a 
at family of smooth curves of genus g, then there is a morphismg : T �! Mg such that for each closed point t 2 T , Vt is in the isomorphism class ofcurves determined by the point g(t) 2Mg .Since all smooth connected curves of genus g=0 are isomorphic to P1, we haveM0 = fptg.In case g=1, the j-invariants of elliptic curves de�ne an a�ne line which is a coarse modulispace M1 for the family of elliptic curves. In 1969, P. Deligne and D. Mumford proved thatMg for g � 2 is an irreducible, quasi-projective variety of dimension 3g-3 (See [DM]). Anexcellent discussion of this construction is given in [MFK], which includes references to otherexamples of the applications of geometric invariant theory as well.Remark 8: The dimension of Mg was already stated by Riemann in his celebrated paper"Theorie der Abel'schen Functionen" of 1857 (See [R]). The word "moduli" is due to himand the subject has its origins in the theory of elliptic functions. The irreducibility wasalready observed by Klein (See [K]) and follows from results of L�uroth and Clebsch; and itwas only much later that Baily showed that Mg has a natural structure of quasi-projectivenormal variety of dimension 3g-3.Remark 9: Nowadays there are three principal approaches to constructing Mg.1. In a transcendental setting, it can be constructed as a quotient of the Teichm�uller space,2. As a subvariety of a quotient of the Siegel upper half-space, or3. Using Mumfords's geometric invariant theory, it can be constructed as a quotient of aHilbert scheme.The moduli spaceMg is not compact, i.e., it is a quasi-projective variety but not a projectivevariety. The right choice of boundary points for Mg was discovered by Mayer and Mumford,



146 Rosa M. Mir�o{Roigin 1963, in an unpublished work. For an excellent discussion of Mg and its compacti�cation,the reader could look at [MFK].Example 3As last example we will consider the moduli problem for vector bundles on a smooth projectivevariety X . We consider the set A= � of isomorphism classes of rank r vector bundles on Xwith �xed Hilbert polynomial H(m) 2 Q[m] and we would like to endow A= � with a naturalstructure of scheme. To this end we de�ne a family of vector bundles of rank r and Hilbertpolynomial H(m) parametrized by a k-scheme S as a vector bundle E on S x X such thatfor all s 2 S, E(s) is a rank r vector bundle on X �= fsg x X with Hilbert polynomial H(m).Unfortunately this moduli problem has no solution and to get at least a coarse modulispace we must somehow restrict the class of vector bundles that we consider. What kind ofsubfamily should be taken? In [MA], [MA1], M. Maruyama found an answer to this question:stable vector bundles. He proved: Let X be a smooth projective variety and let A= � the setof isomorphism classes of stable vector bundle on X of rank r and Hilbert polynomial H(m).Then, there is a coarse moduli scheme M which is a separated scheme, locally of �nite type.This means:1. The closed points of M are in one to one correspondence with the elements of A= �;2. Whenever F is a 
at family of vector bundles of A= � , parametrized by a scheme T(i.e. F is a vector bundle on X x T , 
at over T , whose �bres are in A= �), then thereis a morphism  : T �!M such that for each closed point t 2 T ,  (t) is the point of Mcorresponding to the class of the vector bundle Ft which is the �bre of F ovet t;3. The morphism  can be assigned functorially; and4. M is universal with the properties (1) and (2).Remark 10: In spite of the great progress made during the last decades on the moduli spaces ofvector bundles on smooth projective varieties (essentially in the framework of the GeometricInvariant Theory by Mumford), very litle is known about their local and global structure.References[B] W. Baily, On the theory of �-functions, the moduli of abelian varieties and the moduliof curves, Ann. of Math., 75 (1962), 342-381.[DM] P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus,IHES Publ. Math. 36 (1969), 75-110.[G] A. Grothendick, Les sch�emas de Hilbert, Sem. Bourbaki 221 (1960).[H] J. Harris On the Kodaira dimension of the moduli space of curves II, Inv. Math. 75(1984), 437-466.[HM] J. Harris and D. Mumford, On the Kodaira dimension of the moduli space of curvesI, Inv. Math., 67 (1982), 23-86
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Proc. of the 7th EWMmeeting, Madrid, 1995An example of moduli spaces in number theoryLaura FainsilberUniversit�e de Franche { Comt�e, Francelaura@math.univ-fcomte.frI thank Leila Schneps for introducing me to the subject of Grothendieck-Teichm�ullertheory, for explaining it to me, and for crucial help in preparing this text.1. The inverse problem in Galois theoryThe basic object of interest to number theorists is the �eld of rational numbers Q, along withits �eld extensions. We will �rst consider �nite Galois extensions of Q : given an irreduciblepolynomial P 2 Q[T ], with roots �i in an algebraic closure Q of Q, we let K� be the smallest�eld containing Q and all the �i. Such a �eld is called a Galois extension of Q. The Galoisgroup G = Gal(K�=Q) = AutQ(K�) is de�ned to be the group of �eld automorphisms ofK� that �x the elements of Q. It is a �nite group, and the fundamental theorem of Galoistheory asserts that there is a bijective correspondence between sub�elds of K� which areGalois extensions of Q, and normal subgroups of G. Namely, a normal subgroup H of Gcorresponds to the sub�eld L of elements of K� �xed by all the automorphisms in H , andGal(L=Q) = G=H . In that case, K� is also a Galois extension of L, with Galois group H .We express this in the following diagram:K�j HLj G=HQ )GThe inverse problem in Galois theory consists of �nding out which groups can be Galoisgroups of extensions of Q, and constructing explicit extensions with such groups as Galoisgroups. For example, all �nite abelian groups, the symmetric groups Sn and the alternatinggroups An can be Galois groups, as can the 26 sporadic simple groups (except maybe theMathieu group M23). With a combination of methods, many families of groups have beenshown to be Galois groups. E. Noether found algebraic geometric conditions under whicha group is a Galois group. More recently, Matzat and Mestre, among others, have workedon constructive approaches and given explicit polynomials that de�ne Galois extensions fornew families of groups. One conjectures, and most experts believe, that all �nite groups areGalois groups over Q. 149



150 Laura Fainsilber2. Grothendieck's approachIn the last few years, a novel top-down approach has been developed, in particular by Drin-fel'd, Ihara, Schneps, Lochak, inspired by ideas of Grothendieck. It consists of studyingdirectly the group GQ= Gal(Q=Q) = AutQ(Q). We extend our notion of Galois extensionsto in�nite algebraic extensions : we see a �nite Galois extension K of Q as a sub�eld of Q,and see the Galois group of K as a �nite quotient of GQ. The inverse problem in Galoistheory is now to see which �nite groups are quotients of GQ, and in general to describe thestructure of the large and mysterious group GQ.Qj G1Kj GQ )GQThe \abelian" part of GQ is the (in�nite) quotient of GQ which corresponds to Qab, theminimal sub�eld of Q containing all �nite extensions of Q with commutative Galois group.It is isomorphic to Ẑ� (the multiplicative group of the pro�nite completion of the integers).Whilst the structure of Qab and the action of Ẑ� on it are relatively well understood, we knowvery little about the subgroup � = Gal(Q=Qab) of GQ, or about the way it combines withẐ� = GQ=� to form GQ. Qj �Qabj Ẑ�Q )GQGrothendieck's \dream", as he expressed it in L'esquisse d'un programme, is to understandcombinatorial properties ofGQby studying the way it acts on geometric objects, with the hopeof obtaining a complete description of GQ. The idea is to reformulate geometric propertiesof certain varieties and in particular of certain moduli spaces, in terms of their fundamentalgroups and of the action of GQ on these fundamental groups.3. Geometric action of GQWe are now going to describe some geometric groups on which GQ acts. Let us considerGalois extensions of the �eld C (T ) in one indeterminate over C . There is a one-to-onecorrespondence between extensions of C (T ) unrami�ed outside of 0; 1 and 1 (meaning theideals generated by the polynomials T , T � 1, and the rational function 1T ), and unrami�edcoverings of the projective line with three points removed P1C nf0; 1;1g : the �eld extensionsare the function �elds of the coveringsThe Galois groups of the �eld extensions are the automorphism groups of the correspondingcoverings; they are themselves quotients of the fundamental group of P1C n f0; 1;1g, which isthe free group on two generators F2.We now consider unrami�ed coverings of P1C n f0; 1;1g. Belyi's theorem asserts that ifwe have a covering � : X ! P1C , where X is a Riemann surface (i.e. a curve de�ned over C )



Laura Fainsilber 151such that the critical values of � lie in Q, then there is an equation for X with coe�cients inQ and a new rational function ~� on X with coe�cients in Q and critical values in f0; 1;1g.Let � : X ! P1C be a Belyi cover, i.e. X is a Riemann surface and the critical values of �lie in f0; 1;1g. We can consider the �eld Ĉ (X), compositum of the function �elds C (Y ) forall �nite coverings Y of X . The Galois group Gal(Ĉ (X)=C (X)) is the pro�nite completion�̂1(X) of the fundamental group of X (i.e. the projective limit of the groups �1(X)=N fornormal subgroups N � �1(X) of �nite index).Since X is de�ned over Q, it is in fact de�ned over a number �eld K (i.e. a �nite extensionof Q). We have K = Q, and every �nite cover Y of X is de�ned over a �nite extension of K.Let K(X) denote the �eld of functions on X de�ned over K, Q(X) the �eld of functions ofX de�ned over Q, and for every �nite cover Y of X , let Q(Y ) denote the �eld of functions onY de�ned over Q. Let Q̂(X) denote the compositum of the �elds Q(Y ) for all �nite coversY of X . A classical theorem states that C (X) = Q(X)
 C and Ĉ (X) = Q̂(X)
 C , so theGalois group Gal(Q̂(X)=Q(X)) is isomorphic to Gal(Ĉ (X)=C (X)) which is isomorphic, aswe noted above, to the pro�nite fundamental group �̂1(X). However now the �eld Q(X) isa �eld extension of K(X) with Galois group GK = Gal(Q=K), and we have the followingdiagram : Q̂(X)j �̂1(X)Q(X)j GKK(X) )GA theorem states that the huge group G can be written as a semi-direct product of �̂1(X)with GK . In particular, this means that there is an action of GK on �̂1(X) (in fact there aremany such actions). In the case where X is de�ned over Q, we now have an action of GQ on�̂1(X).4. The moduli spaceM0;4The moduli spaceM0;4 of Riemann surfaces of genus 0 with four marked points is isomorphicto P1C n f0; 1;1g, which is a variety de�ned over Q. So when we look at coverings of P1C nf0; 1;1g, we actually have coverings of the moduli space, and the arguments above showthat there is an action of GQ on �̂1(M0;4). This is very interesting, because mathematiciansfrom other areas, ranging from mathematical physics to geometry, have studied such modulispaces, and described many of their properties.There is a very large group called dGT which also acts on the pro�nite completion of thefundamental group of the moduli space. Drinfel'd has given an explicit description ofdGT as aset of elements satisfying some combinatorial conditions, so that we can actually make certaincomputations with elements of dGT . Drinfel'd and Ihara have shown that GQ is containedin dGT . One would now like to know whether GQ is all of dGT , or how to identify GQ as asubgroup of dGT so as to obtain an explicit description of its action on moduli spaces, andthus get a better grasp of the combinatorial properties of GQ.The philosophy of Grothendieck's approach expresses the idea that the moduli spacesMg;nof Riemann surfaces of genus g with nmarked points (or \punctures") are the varieties de�ned



152 Laura Fainsilberover Q which contain all information about all the curves de�ned over C . In particular theycontain the information about the curves de�ned over Q, which in turn give us informationsabout GQ. Indeed, GQ acts on all the pro�nite fundamental groups of the moduli spacesMg;n, respecting many natural morphisms between these groups which come from geometricmorphisms between the spaces. The following questions are therefore natural ones to askwhen we try to reach a further understanding of GQ and of its relation to dGT :� What is the full group of 1-tuples of automorphisms (�g;n)g;n of the �̂1(Mg;n) forvarying g and n, respecting all the natural morphisms between these groups? (It wouldseem that the answer is dGT , as Drinfel'd suggests).� The group of pairs of automorphisms of the \Teichm�uller Tower" consisting of the twomoduli spacesM0;4 andM0;5, with natural morphisms between them, is precisely dGT .To what extent doM0;4 andM0;5 contain \all the information" about all theMg;n?� Since the moduli spaces contain \all the information" about a class of objects de�nedover Q, is it reasonable to think that no greater group than GQ, which is after all apurely arithmetic group, can act on the tower of their pro�nite fundamental groups?
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Proc. of the 7th EWMmeeting, Madrid, 1995The multidimensional Riemann{Hilbert problem,generalized Knizhnik{Zamolodchikov equations andapplicationsValentina A. GolubevaLet L = Smi=1 Li be a reducible algebraic variety in CPn and � : �1(Cn n L) ! GL(n)a representation. The Pfa�an system of Fuchsian type with singular set L is the systemof the form dF = 
F; where 
 = Pmi+1Ai dLiLi ; and Pmi=1Ai = 0: The statement of themultidimensional Riemann{Hilbert problem is the following: for given � �nd the Pfa�ansystem of Fuchsian type whose fundamental solution realizes the given representation. Forthe simplest case of the variety L (L is the union of non{singular algebraic hypersurfaceswith transversal intersections) some conditions of solvability were obtained (V.Golubeva,A.Bolibruch, T.Otsuki), some partial results are known in low dimensions also for morecomplex varieties L.The Knizhnik{Zamolodchikov equations associated to the root systems An have their ori-gin in the Wess{Zumino{Witten model of quantum �eld theory as the equations for then{point correlation function. The construction of the di�erent generalizations of these equa-tions, in particular, for the other root systems B;C;D permits to consider these equationsas examples of solvable cases of the Riemann{Hilbert problem. Indeed, for some root systemR we are given the reducible algebraic variety in CP n ; usually it is an arrangement of a �-nite number of hyperplanes, the known fundamental group of the complement to this varietyin CPn (the last results in this direction belong to D.Markushevich and A.Leibman) and aprescribed (by physical model) representation �: The generalized Knizhnik{Zamolodchikovequations for a variety of the assumptions on � was constructed by I.Cherednik, A.Matsuo,A.Leibman, V.Golubeva and V.Leksin, ect. The quantum variant of Knizhnik{Zamolodchikovequations (N.Reshetikhin and others) is known.The generalized Knizhnik{Zamolodchikov equations have applications in contemporaryquantum �eld theory and statistical mechanics: in the theory of quantum Hall e�ect, in thetheory of anyons, super{conductivity, etc. The KZ theory is closely connected with the theoryof many{body systems, described by the systems of Calogero{Moser{Sutherland type.
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Quadratic and hermitian forms over ringsLaura FainsilberUniversit�e de Franche{Comte, Besan�con, Francelaura@math.univ-fcomte.frFor quadratic forms over a �eld, Witt's cancellation theorem asserts that if q, q1, and q2are three non-singular forms such that q1 � q ' q2 � q, then q1 ' q2. We want to generalizethis cancellation to the situation of hermitian forms over rings. Let A be a ring with an anti-automorphism �: A! A of order 2, let M be a re
exive �nitely generated left A-module. Ahermitian form is a biadditive map h : M �M ! A such that h(am; bn) = ah(m;n)b andh(n;m) = h(m;n) for all m;n 2 M and a; b 2 A. A form is said to be unimodular if theadjoint homomorphism it induces from M to its dual is bijective. If A is commutative and �is the identity, then the hermitian forms are exactly the symmetric bilinear forms. We givecounter-examples to show that the analog of Witt's cancellation theorem does not hold forsymmetric bilinear forms over the ring of integers Z. However, cancellation is possible forhermitian forms (unimodular or not) over rings which are �nitely generated algebras overcomplete discrete valuation rings, such as rings of matrices over the p-adic integers Mn(Zp)or group rings Zp[G] for �nite groups G.
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Proc. of the 7th EWMmeeting, Madrid, 1995On Sampling plans for inspection by variablesVera I. PagurovaMoscow State University, RussiaDesigning of optimal sampling plans by variables is considered when the item qualitycharacteristic follows a distribution belonging to a two parametric location{scale family ofdistributions. Two{class and three{class procedures of sampling plans by variables are inves-tigated.A random sample of n items is drawn from the lot. Inspection procedures are based onthe measurement of an item quality characteristic X: An attributes plan bases the decision toaccept or reject the lot only on the number of nonconforming items in the sample. Variablesplans are able to achieve the same control with a smaller sample size by making use of thedistribution of the initial measurements.Let X1; X2; : : : ; Xn be independent identity distributed variables with the common dis-tribution density f((x � a)=b)=b; jaj < 1; b > 0; a and b are unknown, f(x) = F 0(x);X(1) � X(2) � � � � � X(n) are order statistics, �X =Pni=1Xi=n; S2 =Pni=1(Xi� �X)2=(n� 1):1 { Two{class procedure. An item will be considered to be conforming if X < u; otherwisenonconforming. Set p = PfX � ug: The hypothesis of interest is H : p � p0 (100p0is maximum allowable percent of nonconforming items) against K : p > p0: We denoted = (a� u)=b; d0 = �F�1(1� p0); Yi = (Xi � a)=b; i = 1; : : : ; n:Theorem 1 Let f(x) = (2�)�1=2 exp(�x2=2); then the uniformly most powerful invariant(u.m.p.i.) test at level � of H against K rejects H when ( �X � u)=S � c� with c� de�ned byPf( �X � u)=S � c� j d = d0g = �:Theorem 2 Let f(x) = exp(�x); x � 0; then the u.m.p.i. test at level � of H against Krejects H when (X(1) � u)=(X �X(1)) � c� with c� de�ned by Pf(X(1) � u)=( �X �X(1)) �c� j d = d0g = �:Theorem 3 Let f(x) = 1; 0 � x � 1; then the u.m.p.i. test at level � of H against K rejectsH when (X(1)�u)=(X(n)�X(1)) � c� with c� de�ned by Pf(X(1)�u)=(X(n)�X(1)) � c� j d =d0g = �:Now we consider an asymptotic approach. Denote EY1 = �; DY1 = �2; mj = E((Y1 ��)=�)j ; �(d) is some function of d; �; �;m3; m4; zp is p{quantile of the standard normaldistribution.Proposition 4 If EX41 < 1; then the test of H against K with the rejection region (( �X �u)=S � (�+ d0)=�)pn=p�(d0) � z1�� has the true level � when n!1:An asymptotic test with estimators of a and b based on central order statistics is consid-ered. 157



158 Vera I. Pagurova2 { Three{class procedure. An item will be considered to be conforming if X < u1; to bemarginally conforming if u1 � X < u2 and to be nonconforming if X � u2 where u1 < u2;p1 = PfX � u1g, p2 = PfX � u2g. The probability of acceptance of a lot of arbitraryquality (p1; p2) is studied.References[1] Lehmann, E.L. (1986) Testing Statistical Hypotheses. N.-Y., J. Wiley.[2] Pagurova, V.I., Nesterova, S.A. (1991): Sampling Plans for Inspection by Variables. MoscowUniversity. Comput.Math. and Cybern. 1.57 -63.



Evaluation





161Evaluation of the mathematical aspects of the meetingIsabel LabouriauUniversidade do Porto, PortugalAt the end of the meeting a discussion took place in order to evaluate the di�erent math-ematical parts. The following is a report of that discussion.The general feeling was that the 3 series of talks and the interdisciplinary discussion onmoduli spaces were of good standard. Non{trivial mathematics were presented in an un-derstandable way, generated interdisciplinary discussions and even some informal workshops(\nothing to be ashamed of" was one comment). The talks had more participation thanusual and speakers felt it was more interesting this way, that is, with a lot of questions asked,although this sometimes made it di�cult for them to reach their goals.The work of the \planted idiots" (members of the audience in charge of asking questionsbesides the spontaneous ones - a habit started at the EWMmeeting in Luminy) was importantto keep the talks at the right level. They created an informal atmosphere in the �rst talksthat was kept through the end. In the last talks there were no \planted idiots"; the onlyquestions were the spontaneous ones but it was pointed out that we should have kept thegood habit to the end. For next time it was suggested that speakers get more information onthe type of talk expected - some talks underwent big changes at the last minute.It was agreed that three topics in mathematics plus one interdisciplinary discussion to-gether with the non mathematical discussions was too much for one week. We should beless ambitious for the next meeting and have more time for talking about maths instead oflistening. Too little time was allowed for the discussion on moduli spaces - the organizerswere not sure how it would work - and it turned out to be so interesting it was continuedin the spare time. One suggestion is that we have fewer talks towards the end of a meetingin order to have time for interdisciplinary discussions, like the one planned on moduli spacesand the spontaneous one on renormalization.There were several opinions on the best way to organize a series of talks next time, opinionsvaried. The choice is not only between summer{school type or research {conference type talks;we may want to do something new, talks that generate an interdisciplinary discussion. Foreach series we may need an introductory session to introduce the language and basic results.This is hard on the �rst speaker and where do we stop when going backwards? The goal ofthe series is not to learn the language but to transfer ideas with a minimum of language. Twoof the series in Madrid had an introduction that was necessary, but not the main goal. Some�elds may be naturally more technical and need more introduction; some areas also have atradition on non-technical talks. Maybe we should not spend too much time on elementarythings, after all, one may understand a lecture without the details and appreciate it; we areused to that. With such a wide audience it is di�cult to avoid some form of introduction,the question is how much.The role of the organizer of a series was also discussed and how much she should interfere,either directing the speakers and choosing the topics so as to reach a certain goal or justtrying to get the best maths we can, even at the cost of some coherence. Again some felt thatit depended on the subject, as it is di�cult to give a good idea of the �eld with homogeneoustalks.



162The talks that were not part of a series had a small audience - partly because the programwas already heavy and partly for the lack of advertising, those interested could not alwaysattend a talk. Parallel sessions were not thought to be a good solution, it makes talks moredi�cult to attend and somehow tend to become a secondary hierarchy without any scienti�cbasis. Many of us prefer posters as they can be read at one's own speed and it is easier toask questions. The problem is that people usually do not make good posters, maybe the �rsttime we need guidelines. It might work if everybody had a poster, with a photo on it andmaybe some historical background, so the posters would be less linked with hierarchy andtake the place of introductions. It would be good to leave them on all the time and have asocial event near them to break the ice.



OTHER TOPICS





165In between meetings: the \everyday" life of EWMReport by Sylvie PaychaInternational EWM meetings are organised every two years; they o�er an oportunity forwomen mathematicians from all over Europe to meet together, exchange ideas on mathemat-ics as well as on women and mathematics. However, once every other year is seldom, andwe feel EWM should go on \living" in between meetings. What could the \everyday life" ofEWM be? E-mail o�ers many possibilities, such as sending the Newsletters to members ofEWM and thereby keeping them informed of what is going on in Europe in the way of womenand mathematics, discussing plans for the future among members of the standing committee,organising the proceedings of the last conference, : : : However, exchanges via e-mail is a bitimmaterial and maybe not fully satisfactory as the \everyday life" of an organisation!We have thought of trying to organise concrete projects between the meetings of EWMwhich could be smaller scale meetings around a speci�c topic involving a few members ofEWM interested in the topic.A �rst attempt in that direction is an interdisciplinary workshop on \Renormalisation inMathematics and Physics" (of which you will �nd an announcement here) which will takeplace in Paris. The idea of the topic of this workshop came up during the EWM meetingin Madrid where spontaneous discussions arose as to the di�erent interpretations of thenotion of renormalisation, a concept which was mentioned in various talks (in the �eld ofstatistical physics, of complex dynamical systems, of quantum �eld theory) in the course ofthe conference.Such meetings between the general international meetings of EWM are a step towards amore concrete \everyday life" of the organisation!
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167Renormalisation in Mathematics and PhysicsParis, June 14 and 15, 1996Preliminary announcementThe purpose of this workshop is to study the various interpretations of renormalisationin dynamical systems, statistical physics, and quantum �eld theory, and to explore the con-nections among them. Preliminary discussions on this subject took place at the last EWMmeeting in Madrid in September 1995.The workshop, a small scale two day meeting, will consist of four sessions, two each day,each session having at most two talks. Each session will include ample time for discussion bythe participants of the various manifestations of renormalisation.Abstracts of the talks should be available at the workshop and more detailed proceedingsof the workshop, including the discussions and additional comments by the speakers, will beavailable afterwards.Location. Institut Henri Poincar�e, Paris, France (where femmes et math�ematiques has itso�ce). Accomodations will be organised depending on the number of participants (either inprivate homes or in a student hall). ProgrammeFriday sessionmorning session: Renormalisation in dynamical systems(I)speakers: Laura Tedeschini-Lalli (Rome), Betta Scoppola (Rome)afternoon session: Renormalisation in dynamical systems (II)speaker: N�uria Fagella (Barcelona)Saturday sessionmorning session:Renormalisation in statistical physics and quantum �eld theoryspeaker:Annick Lesne (Paris)afternoon session: Extension of the notion of renormalisation to in�nite dimensional ge-ometryspeaker: Sylvie Paycha (Clermont- Ferrand)Other speakers will be announced later onScienti�c committeeBrodil Branner, Lyngby, DenmarkLaura Tedeschini-Lalli, Rome, ItalySylvie Paycha, Clermont-Ferrand, FranceOrganising committeeColette Guillop�e (Cr�eteil, chairperson of femmes et math�ematiques)Sylvie Paycha (Clermont-Ferrand, convenor for EWM)For further information, please contact Sylvie Paycha at:paycha@ucfma.univ-bpclermont.frtel:(33) 73 40 74 42
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169Fe-mail/E-mail discussionReport by Sylvie Paycha and Capi CorralesBased on notes taken by Ute B�urger and Antje PetersenThe use of e-mail as a mean of communication between mathematicians is now wide spreadaround the world. As a new way of exchanging information and ideas, it can have some impacton how the mathematical community functions. We felt it was time for us to talk about theassets and draw-backs of such a mean of communication, and more speci�cally for womenmathematicians.Time for discussion was short and at this stage we can only formulate a few questionsaround this topic which we hope will lead to further discussions on and use of e(fe)-mail!� What is the status of the language used in an e-mail message?It seems to be neither spoken nor written, but something in between. This \in between"status has the draw-back that it can lead to very abrupt messages (like \No!" as ananswer to a question), if the person who sends the message does not feel the need towrite a few words of introduction as one otherwise would in written form. In this senseit can sometimes be felt as an unpleasant (although fast) mean of communication. Onthe other hand, people sometimes feel free to suggest an idea in an e-mail message thatis not yet \ripe" enough to be formulated in usual written form but which is still worthsending by e-mail. This leads to the second question:� Does \e-mail" modify the way mathematics are \done"?New ideas can be exchanged rapidly by e-mail even if they are still in the process ofbeing elaborated. They can therefore be elaborated in collaboration; a deep idea cancome from many ideas (even if super�cial) suggested by many people. The notion of\authorship" (which was and still is so important for recognition in the mathematicalcommunity) for one idea might gradually loose its meaning because of this superposi-tion of ideas coming from di�erent people. But what if one is not in a discussion orinformation network and cannot participate in this \common" elaboration of ideas ?� What about exclusion phenomena via e-mail ?An e-mail discussion or information net grows fast but it can easily happen that onedoes not bene�t from it by lack of information or because one does not have access tocomputers on which one can enter these nets. Since a lot of information mathemati-cians use nowadays transits through these means of communication, there is a clearsegregation between mathematicians who use these nets and the others, who for somereason or other, are excluded from them.� What about women mathematicians and e-mail?Which among the advantages/draw-backs mentioned above of this new mean of commu-nication bene�t to/disadvantage women mathematicians ? Do women mathematicianshave in actual facts less access to it, do they use it less and why ? Some concretesuggestions came up during this informal discussion, such as{ to organise a technical workshop during the next general EWM meeting to makewomen more familiar with the possibilities of the internet,{ that Riitta Ulmanen could write a manual about how to make the best use of e-mailwithin EWM.
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171Mathematical studies at European universitiesMagdalena JaroszewskaAdam Mickiewsicz University, PolandData enclosed in this paper have come partly from information booklets and partly fromdirect communication with teachers and students of a number of European universities.The European universities began to develop in the 12th century, the �rst ones stem-ming from monastery schools. In spite of numerous transformations they still preserve theirtraditional medieval organization and status, including divisions into faculties, structure ofauthorities, autonomous management. Some of the oldest universities established in 12th -14th centuries are Bologna, Paris, Oxford, Cambridge, Parma, Salamanca, Valencia, Padoa,Naples, Rome, Prague, Cracow, Vienna, Heidelberg, K�oln and Barcelona. The Sorbonne inParis provided the university organizational pattern for other universities.In our days there are numerous new scienti�c disciplines under development which in-creases demand for highly quali�ed specialists. The university graduate should have broadgeneral education and also be well prepared for highly specialized professional career. Howto balance the two aims, i.e. broad horizons and good professional training, in education ofstudents? This goal poses still di�cult problems for people and institutions responsible foreducation.Quite recently, extensive political and social changes have been taking place in Europe.Students of today may choose place for studies practically all over Europe. Also the univer-sities are changing in many ways, responding to market rules and economic pressures of thenew Europe. The academic world tends to show a more elastic approach both in admissionof students and in programs, o�ering the students the chance to choose more freely their ownline of studies.The system of university studies di�ers quite distinctly in di�erent countries and evenbetween universities in the same country.Most often, the students start the studies at the age of 18 - 19 years. The studies areperformed at most of the universities in three stages, corresponding to the degrees of Bachelorof Science, Master of Science and Ph.D., respectively. The duration corresponding to thesestages di�er quite signi�cantly.The �rst stage of mathematical studies lasts two to four years during which the studentacquires basic education. The principal subject, mathematics, is frequently accompanied byanother one like physics, informatics, economy, psychology.The second stage lasts one to three years. The studies are more specialized and theindividual work of the students is emphasized. Most students end their formal educationafter this stage.The third stage, Ph.D. studies, is undertaken in general by few students. Each of thestudents remain under care of a promotor of his/her choice and is given a subject for scienti�cwork, usually within a specialized branch. As a rule, the students have to pass some examsat this stage, but their principal aim is to present a paper containing some new own results.



172Let us look at some of the countries.BELGIUM. Mathematical studies take 4 years and the �rst diploma - of the Candidatureor Baccalaureate - is granted after the �rst two years. The diploma carries no practicalsigni�cance. After 4 years of studies the student receives the Licence Diploma which isaccepted at the labor market.DENMARK. Mathematical studies are often combined with some other subject like in-formatics, physics, statistics. After 3 years the students receives B.Sci. degree and, afteranother two years the degree of Candidatura Scientiarum, corresponding to Master degree.A Ph.D. degree consists of a Master degree followed by a 3 year research training program. InDenmark, there are several universities with alternative organisation of studies. At RoskildeUniversity, for example, all degree courses commence with a two year basic studies program.The basic studies program is a broad introduction to the humanities, the social sciences orthe natural sciences.ENGLAND. The �rst three years-long stage provides the student with the degree of theBachelor of Science. The second stage of 1.5 { 2 years grants the student the title of a Masterof Science. The third stage yields the title of a Philosophy Doctor (Ph.D.) and, in conjunctionwith the earlier stages, completes the 6 years studies. During the �rst three years frequentlyonly one branch of science is taught while the remaining subjects are treated only marginally.Some universities, in particular the newer ones, o�er a variety of Single Honours, Joint Hon-ours, Combined Honours. For example, at the University of Birmingham the spectrum of3{years long studies includes, among other, the following types: Single Honours in { mathe-matics, pure mathematics, applied mathematics, mathematics and statistics, statistics; JointHonours in { mathematics and computer science, mathematics and psychology, mathematicsand sport science; Combined Honours in { mathematics and ancient history, mathemeticsand French studies, mathematics and music, etc.FRANCE. The �rst stage of studies takes 2 years and provides the student with the Diplomed'Etudes Universitaires Generales. In the course of the second two years{long stage La Licenceis granted after the third year and La Maitrise after the fourth year of studies. Ph.D. titlecan be obtained after the subject stage, which lasts 3 to 5 years.FINLAND. After 5 years, the �rst diploma { Filoso�an Kandidaatti and after the next 3years { Filoso�an Tohtori are awarded.GERMANY. The studies last 4 to 5 years, they lack the �rst stage and yield no title,which would correspond to the B.Sci. title. After 4 { 5 years of studies one can get the titleDiplommathematiker(in). The curriculum of studies may include two branches of science,the principal one, e.g. mathematics, and the accessory one, e.g. chemistry.HOLLAND. Similarly as in Germany, no title is given which would correspond to B.Sci..The student is given the title of Doctorandus, an equivalent of M.Sci., after 4 years of studiesand after the subsequent 4 years obtains Ph.D. title.ITALY. All university studies take usually 4 years. After 4 years, the student receives thetitle of Laurea Dottore which corresponds, more or less, to the B.Sci. degree. The next stagelasts 3 to 5 subsequent years and yields the title of Dottorato di Ricerche (Ph.D.).NORWAY. The title of Candidates Magistrates can be reached after 3.5 years of studies,Candidates Scientiarum after further 3 years and Doctor Scientiarum after about 3 moreyears.



173POLAND. Until recently the uniform studies lasted 5 years. Now, Polish universities o�er3 to 3.5 years studies yielding the title of Licentiate with the possibility of prolonging themby another two or three years and obtaining the title of Magister. The curriculum of the 5years long studies frequently contains the list of subjects required to obtain \in passing" thetitle of Licentiate. After 4 more years of studies the title of doctor can be reached.PORTUGAL. Four years of studies lead to the Licenciatura. After additional 2 years ofstudies the student may obtain the title ofMestre and after another 3 to 4 years a Ph.D.degree.SPAIN. The title Licenciado can be obtained after 5 years and Doctorado after 4 more years.SWEDEN. The �rst 3 years of studies lead to the title of Filoso�e Kandidat. After 1 { 2more years of studies the degree of Magister and after subsequent 3 to 4 years { the Ph.D.degree can be reached.SWITZERLAND. At some universities, the title Diplomierte Mathematiker(in) can bereached after 4 to 5 years of studies. After 4 more years, the title Doctor Philosophiae canbe received.By the years of studies we mean academic years. An academic year for example includes 30weeks (Poland), 40 weeks (Sweden) or 42 weeks (Holland), organised in either two semestersor three trimesters. In most countries, the program corresponding to the M.Sci. degreeincludes 2.5 to 3 thousands hours of classes, lectures, laboratory exercises and seminars.Some universities preserves traditional model of studies, in which the student is confrontedwith a curriculum, distributing all subjects to individual years with speci�ed terms at whichgiven credits should be obtained or exams passed. In many countries the point system ofstudies is being introduced. To be graduated the student has to collect an adequate numberof credit points for obligatory subjects as well as for optional subjects. For example, at theUniversity of Amsterdam (UVA) all parts of the 4{year program in M.Sci. studies formmodules of the same size. For the course load of a given module the student receives 7 creditpoints. The course load is measured in hours: 1 point = 1 week of studies =5 days x 8 hoursof work = 40 h of work (including about 20 h of classes + 20 h of individual work). One yearof studies = 3 trimesters = 3 x 14 weeks of studies = 42 points. Then 4 years of studies =168 points. Each subject can provide a de�ned number of points. At the �rst year of studiesthe so called propedeutic year, all subjects are obligatory. At the year 2, 3, 4 (the so calleddoctoraal phase) some subjects in individual specialities are obligatory and some are elective.The studies are highly individual, the students conciously shape theirs curriculum of studies.Examination systems di�er very strongly. Frequently, the students pass exams after �n-ishing each course or during the year/semester at which lectures on the subject were given.In some countries the examination is held after two or more years of studies. In most ofEuropean countries the examination system oscillates between these two extremes. Let usscreen the patterns at some of the countries resp. universities.DENMARK. Each subject culminates in the form of an exam at the end of semester oracademic year. Interestingly, the examining body includes the lecturer but also an additionalprofessor.SCOTLAND. Universities grant degrees with evaluation of the relevant quali�cations byexternal examiners.



174ENGLAND, Oxford. Students are examined at the end of the �rst and the third year ofstudies. Within a week the students pass 8 written exams, each lasting 3 hours. The examstest 
uency in the material of obligatory subjects, both in the basic and in highly specializedbranches of science.GERMANY. The students have 2 main exams: Vordiplom{Prufung at the end the secondyear of studies and Diplom{Prufung at the end of the �fth year of studies.PORTUGAL. Knowledge of most basic disciplines is tested by a single written test examat the end of each semester. If the student fails at the exam - he/she can correct the resultpassing the oral exam.According to the available information, the �rst stage of mathematical studies includesbasic subjects common to majority of universities while curricula of mathematical studiesdi�er a lot between universities at the second stage of the studies.Almost all universities o�er the following program:� Mathematical analysis : sequences, limits, continuity, derivatives, inde�nite and Rie-mann integrals of functions of one and several variables, curvilinear and surface inte-grals, ordinary di�erential equations.� Linear algebra and algebra of basic algebraic structures.� Euclidean and analytic geometry.� Principles of informatics, numerical analysis, probability and statistics.As evident from the above, European universities di�er from each other in mathematicalstudies by the system of studies, the ways in which subjects are taught and the exams areconducted, they grant distinct titles and grades. Only the portion of basic mathematicalknowledge is common to majority of studies curricula at the preliminary years of studies.The following questions arise:� Is it purposeful (and possible) to harmonize or standardize curricula of the �rst yearsof studies and to do the same with the granted degrees in the contemporary Europewith open borders and possibilities of free choice and change of place of studies ?� Is it possible to de�ne a certain European standard in the range ?These problems have been discussed at the Round Table of European Congress of Math-ematics [3].Suggestions: The �rst step towards uni�cation is comprehensive information. It wouldcertainly be very useful if mathematical institutes/faculties could publish information book-lets in English. The booklets should contain curriculum of mathematical studies. This wouldgreatly facilitate work and decisions of both students in mathematics and the persons in theinstitutes/faculties responsible for education and for student transfers.
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Family versus CareerThe activity around the discussion on `Family versus Career' was organized by sciencehistorian Eulalia P�erez Sede~no from Universidad Complutense de Madrid. In the spring of1995 she formulated a questionnaire which was distributed by EWM. The paper which followsis her record of the 53 answers which she received.Eulalia presented the results of her studies at the EWM meeting, following which a livelydiscussion took place. Participants emphasized that only a tiny amount of material wasgathered, that no statistical conclusions could be drawn, and that those who answered mainlyrepresented `survivors' in the mathematical community.We would like to make quite clear that opinions and conclusions expressed in this paperdo not necessarily agree with those of EWM as an organization or those of its members.
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179Family versus Career in Women MathematiciansEulalia P�erez Sede~noUniversidad Complutense de Madrid, SpainFor a long time it was claimed that the fact that girls chose less scienti�c subjects thanboys was re
ected in the number of female scientists; and as the number of women studyingsciences is smaller, smaller too is the number of women reaching professional success inthat area. However, today we know that in some countries the global number of womenin university is greater than that of men1; but there are fewer women studying physics ormathematics; the distribution of women in the di�erent scienti�c specialities is unequal.When women surpass men, as well as when this is not the case, neither the quantity ofprofessionals corresponds to the quantity of women prepared for this, nor is the distributionin the di�erent knowledge areas equal; and there is no equality in the positions that men andwomen occupy2. Furthermore, a few sociometrical studies seem to show that the scienti�ccareers developed by men and women are di�erent (Cole [1979] and Zuckerman et al. [1991]).Why this is the case, is something sociologists and psychologists have attempted to explainin many various ways.Many scholars tend to blame partnership and maternity for the fact that women do notreach, in great quantities, the working market in general and do not access the highestpositions in all the scienti�c areas 3. The underlying argument proceeds, more or less, inthe following way: the pursuit of a scienti�c career is a full-time job; women carry theresponsibilities of the household (they take care of the house, children, sick or old people,etc.). Performing the housewife functions takes a lot of time. For that reason, women eitherdecide for the family (and thus there are less women than male in these professions) or theirwork is resented in terms of their scienti�c performance and e�ciency. That would mean, forexample, that single women would have to progress just as single males. In the same way,if it is said that marriage and children reduce the productivity of women, we would have toexamine whether married women with children produce less than men in the same situation.There would have to be di�erences between married and unmarried women, among womenwith children and those without; and in other words, men and women with a similar quantityand quality of publications would have to have equal status. In fact, few empirical studiesfocus on these problems. The few existing studies deal with a few North American womenbelonging to various scienti�c disciplines 4, and they suggest the contrary (Zuckerman etal.[1991]). However, it is continuously asserted that the family is an obstacle to reaching fullequality in science.The present paper presents the results of a study accomplished through the association\European Women in Mathematics". A questionnaire was sent out through its network. Itwas intended to analyse educational, professional and economic status of the respondents andtheir households of origin; the development of their professional career - year of completion0This research has been partially supported by Spanish DGICYT, project number PB92-0846-C06-02 andby the Researchers' Temporary Mobility Program funded by the Spanish Government.1That is the case in Spain; see P�erez Sede~no [1996].2See, for instance, Cole[1979], Rossiter[1982] and P�erez Sede~no[1996].3On territorial and hierarchical discriminations see Rossiter[1982] and P�erez Sede~no[1995].4See Zuckerman, Cole and Bruer [1991] and Cole [1979]. The study made by Jaiswal [1993] is more extensiveso it is based in 158 women and 122 man. But it does not distinguish between di�erent sciences and it is madein India, a country with a di�erent structure.



180of studies, �rst job, Ph.D. and publications, if any; the time they devote to domestic tasks,that is supposedly subtracted from study time and research, and it was intended to examinetoo, if di�erences in the previous factors result in di�erent levels of performance; but also itclaimed to grasp how these women perceive other women mathematicians, how they perceivethemselves, what qualities they consider women mathematicians should have in order toperform their work, if they feel discriminated against, etc. In short, it was intended to throwlight on some aspects of life of a handful of female mathematicians, so we could understandas much as possible about their situation and reality, with no vague speculations.We claim to have obtained informative and qualitative data. We must take into account thefact that the sample is extremely small. Accordingly, anytime percentages are o�ered, theymust be understood as merely informative of the situation, opinion etc. of the respondents.At no time is it intended to make any extrapolation nor generalization about the joint totalof all the European women mathematicians. And moreover it would be ridiculous to do so.Furthermore, many of the analysed aspects are very di�cult to quantify, just as what happensin the case of sex-based discrimination.I also have to indicate that, from the point of view of social science, it is very important forthe results that the interviewee does not know what working hypotheses guide the researcheror what he/she is looking for. Otherwise, their answers can be guided so they can thinkof answers that they would not have considered or they can conceal other ones. For thatreason, I attempted to hide the pursued objective. In any case, the particular nature of theassociation, and the questionnaire didn't leave a very wide margin to speculation5 .The questionnaire had both closed and open-ended questions and it was very long; it wasclaimed it was directed to women from di�erent countries, at di�erent ages, with di�erentprofessional, economical and family situations; and even taking this into account, manyquestions had to be obliterated.We do not know the exact number of women the questionnaire reached, but we estimatethat it was transmitted to some two hundred women. 53 answers were received. The re-spondents belong to almost all the European countries. In this sense there are only twonotable things: the absence of women mathematicians from the \eastern" countries and fromIreland, Switzerland, Austria and Greece; furthermore nine respondents live in the U.S. Andin connection with mobility in work, only eight of the respondents work in a country whichis di�erent to their country of origin.The occupations of these women are in the academic world, as I assumed originally, and 4students answered too. Also there is one technical writer and one housewife. They describetheir work in a variety of ways: sometimes they are very speci�c and sometimes they arevery general and vague. The most prevalent activity is the teaching of mathematics (incompulsory - six to sixteen years old - or upper secondary schools - sixteen to eighteen - , forundergraduates, graduates or Ph.D. students); this is closely followed by research. But only7 respondents say they are performing administrative tasks. All of them belong to severalscienti�c societies, except 2, (the average is to belong to 3-4 societies or working groups).These women were aged from 21 to 60 years old, and they were distributed in the followingway: 12 women were aged from 51 to 60 years old (Group 1). The so-called Group 2 wasformed by 10 women from 41 to 50 years old. The greatest number of women (Group 3)were from 31 to 40 years old (22 women, that is to say 41.5%); and only 8 women were5But some surprising reactions were produced. Many respondents said their partners were mathematicianstoo, but a few said that they didn't believe their partners were interested in answering the questionaire (theywere asked to pas the questionaire to their partners in the case were they were mathematicians too).



181from 21 to 30 years old. In an academic context, and generally in the labouring world, theage is extremely relevant. With rare exceptions, there is a minimum age at which to beginuniversity studies, to begin to work and a maximum age to retire. The age is also a frameof reference with respect to maturity and experience in work. Generally speaking, a greaterservice time gives as a result a promotion, a better position and better salaries. This remainsfully con�rmed in the case of our respondents, since the proportion of permanent positionsdiminishes as age decreases. But it must be emphasized that the global percentage of womenthat have obtained permanent or tenured positions in their workplace is very high: 70.58%6. The socioeconomic background of the respondents' results is relevant in order to under-stand their place in the social structure. It also must be taken into account that in traditionalsocieties, individuals form a part of the family and this shapes them. Because of this, it doesnot appear strange to suppose that the fact that women become a member of professionsdominated by men - and mathematics is one of them - is in
uenced by the sexual role, thesocialization and the upbringing of girls in their families. The education and profession ofthe parents, as well as the family income facilitates or hinders the education and professionof women. Above all, the parents educational level is a very important factor in order toprovide a better education and to select a suitable occupation.The socioeconomic status of the original households of all these women was quite uniform;it was middle class, though 18% said they proceeded from a lower middle class home and18% proceeded from a higher middle class household.The educational status of fathers in Group 1 is quite uniform too: all of them possess ahigh educational level that moreover is superior to the mothers' one: 66.6% of fathers haduniversity degrees, and a third of them had a Ph.D.; concerning the mothers, only 25% hada university degree, and another 25% had attended high school. The fathers' professionsare varied, but 41.6% were university teachers; also there were attorneys, engineers, etc.Curiously, in this group only two mothers did not work; and the professions of the rest ofthe mothers were varied, although a third of them are teachers. Fathers from Group 2 hada high educational status: only Group 3 fathers did not possess university studies; half ofthe mothers did not have university degrees or similar education. In relation to fathers'professions the academic ones were numerous, and the rest of the fathers were business men,farmers or architects. Four mothers, out of the total (10), did not work; the professions ofthe others were: architects, psychoanalysts, business or mathematics teachers. In Group 3,just three fathers didn't have university education and seven fathers had a Ph.D.; engineers,architects and teachers with scienti�c training, and especially mathematical knowledge, werenumerous. Regarding the mothers, 27.2% were housewives; the rest were distributed amongdi�erent professions, but teaching was the most common (36%). Finally, parents in Group4 were the most assorted economically, educationally and professionally. Although just 8women make up this group, all the economic situations of the questionnaire appear; and inconnection with the educational status, three fathers have university education and there isjust one (mathematics) teacher, the rest of the professions varies. The educational statusof the mothers in this group is slightly superior to the fathers' one: 5 obtained universitydegrees and two high school degrees. There are three teachers, two administrative o�cers, asecretary, a banker and only one housewife.Marriage or partnership and the children, if any, and the time these women devote tothe household are very important in this research, as we can learn how their family situation6Men who answered the questionaire are not included here.



182a�ects or has a�ected their professional performance or e�ciency. In order to measure profes-sional performance four factors have been used: the year of completion of the undergraduatedegree, the year they obtained their Ph.D. degree, the year they began to work (remuneratedwork) and the number of publications 7.Marriage or partnership8 provides a new status to individuals. It usually confers newroles and positions: on one hand, society expects, as a minimum, that households as wellas the upbringing of children and care of older family members, if any, shall be the domainof women; additionally, the position the household occupies in society tends to sum up thestatus of both members of the couple9. All women in Group 1 have or have had a partner.Generally they obtained a partner late, supposedly after having established their professionalcareer, in a certain way. Just two of them obtained a partner before the age of 24 andjust one was a student. All the partners of these women have obtained a university degreein science, for the most part mathematics or related subjects; we do not know about twoof them since this information was not given to us. In Group 2, all women have or havehad partners. Four women had their �rst partner when they were less than 25 years old.Mathematicians or persons with strong mathematical training, such as engineers, economists,and so on, are numerous among the partners of this group. In any case all of them have auniversity education, except one (where information was not given). Group 3 was composedof 22 women, and just �ve of them have not, or have not had, partners. Nine womenobtained partners before they were 25 years old. All the women with partner, except two, hadformal relationships with scienti�cally trained people (mathematicians, engineers, computerscientists, etc.). Finally, in Group 4 only four women have a partner: 2 of them obtainedpartner before the age of 25, the other two women later. Regarding the educational orprofessional status, three partners in Group 3 have scienti�c training and 1 is a travel agent.Previous data show almost total congruency in educational and professional status amongthe couples. Such a fact supports the conjecture that, in our current society, such congruencyis a very important variable in the vital situation of an individual. That congruency a�ects thelifestyle, the couples' behaviour and adjustment; it also provides stability and psychologicalreward. Nonetheless it is worth emphasizing that some women state that their partner hasbeen one of the most principal obstacles they have found in the development of their career.We can examine to what extent family situation a�ects the professional and scienti�cperformance or e�ciency in these women. In Group 1, women �nished their graduate studiesfrom 21 to 24 years old. All these women began to work from 20 to 24 years, except 2: onebegan when she was thirty years old (before she was married and had children) and the otherwhen she was thirty seven years old, (17 years after her marriage and 11 after having her lastchild). Just two women did not have children and four had the �rst before they were thirtyyears old. That is to say, in this group 66.6% of women with children were \older" mothers,that is, when they were thirty years old or more. These children went to school when theywere six or seven years old (just four children began school before).However, neither partnership nor maternity have a�ected the performance or e�ciency ofthese women, against what is many times claimed. Just one woman resigned from a tenuredposition to be devoted to her children, but the rest continued working after marriage and7I am aware of problems implied by using these factors. For instance, some respondents have not �nishedtheir graduate studies yet; others spent so much time teaching that they can scarcely publish. And, concerningmotivation, I am aware too that some questions would have to be asked.8I am referring to heterosexual partnership; the homosexual one varies as it does social permissiveness.9We must take into account that, in most countries, women loose their maiden name and they go on to becalled by their husbands' names, that is to say, in a sense, their previous identity disappears.



183children. Seven obtained their Ph.D. after having their �rst child and when at least onechild was not going to school yet. Just in one case does the �rst childbirth and doctoratecoincide. In relation to women with no children (just two), it does not seem they have hadbetter performance than the other ones. Even though one of them obtained her Ph.D. andpublished her �rst paper by the time she was 25 years old, the other obtained her Ph.D.at twenty nine and published her �rst paper at thirty seven; this is not meaningful, sincethere are Ph.D. women at twenty four, twenty eight and twenty nine when they alreadyhad children. Concerning publications of women with children (and the subsequent pace ofpublication) they do not seem to be a�ected negatively by marriage or children: only one ofthem published for the �rst time when her youngest child was 11 years old.In Group 2 all women �nished their graduate studies between the ages 21 and 23: justone of them interrupted her university studies because of maternity and she �nished someyears later. They started to work at a slightly di�erent age: just one at 23, seven from 24to 28 and two when they were more than 30 years old. The seven women with a Ph.D.obtained the doctorate at similar ages: from 25 to 30. Although all had children much aftertheir doctorate, their motherhood did not in
uence their scienti�c performance: all of themcontinued publishing at the same pace, and even to a greater pace, after having children.Just one published at forty two for the �rst time, much after her youngest child had begunto go to school. There does not seem to be a meaningful di�erence between those womenand those who do not have children (three) in relation to their �rst publications: one of themstarted to publish at 26, one at 28 and the third at 40.The trajectory in the university of women in Group 3 is standard too. Most of themstarted to work when they were between 24 and 30 years old, but one began at 22 and 3 from30 to 33 years (and two of these do not have children). Thirteen women did not have childrenand twelve of them obtained their Ph.D. From nine women with children, eight have a Ph.D.; and six of these mothers obtained their Ph.D. after having had their �rst baby and when atleast one child was not going to school yet. The quantity and pace of publications does notvary because of marriage or maternity in most cases, as the average of publications of womenwith children is superior to that of women without children. Of course this must be takenwith caution, since some respondents (4) have not answered this part of the questionnaireor they have answered partially. The analysis of the situation of the last group is not veryinformative, as no one has published, just two have obtained a Ph.D. and just one has a son.The dedication to the tasks of the household varies among the people polled: from 28hours per week that some women reveal until 0 hours that other ones assert. There is nodi�erence between women living alone and women with a partner or family: 10 hours as aweekly average. Most interesting is how much time each member of the couple devotes todomestic work: in Group 1, �ve women say they spend the same amount of time as theirpartners, but three claim they spend more time than them on these tasks. In Group 2 justone spends the same amount of time as her partner, another one spends less time than herpartner and in the rest of the cases they spend more time on household tasks than theirpartners. In Group 3, one woman asserts her partner spends more time on housework thanshe does, but the quantity of couples in which women do more household work than theirpartners is equal to couples in which the work is distributed in a similar way. Finally, inGroup 4 all women answered they spent more time on household work than their partners.All these women work in a masculine context; that is to say, in their workplace more menthan women work and those male colleagues exercise control over greater number of persons(usually students). Mainly, they feel they are equally treated to their male colleagues in terms



184of salary and promotion (67 %) and responsibilities (60 %). But �ve women have a higherquali�cation, needed in order to perform their work and they could occupy superior positions,that is to say, they are underemployed. And the number of women that feel undervalued isvery similar to those which feel themselves to be equally valued. In relation to the rest of thewomen, 87.1 % of the respondents think there are more women undervalued than men and73.2 % of the respondents think that there are more overvalued men than women10.We can classify the support and the opportunities they have found in their career intwo types: personal/intellectual and economic. In the �rst kind it should be emphasizedthat twenty respondents admitted having had a male counsellor, 2 a female counsellor andone respondent had both male and female counsellors. And some of the answers were \Meetinteresting people", \enjoy mathematics", \invitation to collaborate on a problem", \supportfrom colleagues and husband", \general interest", \ability to talk to others", \meeting peoplewho have encouraged me", \many excellent programs to develop teaching methods". Inrelation to the second kind, scholarships or grants are the most cited items. The fact thattheir advisor helped them to �nd their �rst job, \opportunity to work as an assistant",\sabbatical periods", etc. are quoted too. It must be emphasized that only two women referto programs for promoting women.The answers concerning the obstacles they met in their careers are also varied, but family isthe most quoted. When they say \family" they mean balancing between family and professionor to have to decide between family and career. And obstacles directly related to theirsex are numerous: \Sexual and sex-based harassment", \most of the time the fact I am awoman", \some male colleagues resent my e�orts to hire and retain women in the faculty",\bad rumours", \men were preferred in positions", \family problems", \partner's competitiverelation to my career", \women who discourage other women, having to justify how muchI contributed in joint publications". \Very rare opportunities for promotion" and \blatantdiscrimination" can be understood as sex-related too. However, there are many more: lackof people to talk to for research, loneliness, isolation in my department, (\which it is notdeliberated to you by the men", one adds), incompetent advisors or lack of strong counsellors,lack of support from pure mathematics colleagues in the department, academic attitudetowards teaching versus research, teaching looked down upon, time, not available positions,political corruption, favoritism and incompetent decisions at departmental level, and so on11.These few pages express a brief summary of the results of the questionnaire. I am awareof many things that are obliterated, but other aspects have come to the light. Some of themcan be object of re
ection by the association itself12. But many can be a matter of generalthinking.Social scientists don't agree on a unique de�nition of discrimination. The variance in theirde�nitions reveals the di�erent points of view in discriminatory behaviour scholars (Cole[1979]). And on sex discrimination the di�erences are great. The traditional concept ofwomen, the socialization process of the girls and the social accepted position of women infamily life seem indicate that women performance would have to go in a certain direction. Butthe results of the questionnaire show that pregnancies, upbringing babies, publications, Ph.D.,positions, and so on are interwoven. And the result of the questionnaire says too that there arenot meaningful di�erences with respect to the age at which single and married women, women10Just one respondent said that there are more overvalued women.11Many of these obstacles could be adduced by other academicians or scientists.12For instance, there are few young female mathematicians. These can be because the foundational charac-teristics of the association. But it can be because the educational status of the household origin.



185with children and without, obtain their Ph.D. and their positions, or when they publish.Usually these women have to adjust their career and their family, and, nevertheless, theyobtain their Ph.D., positions and publish. So we can conclude that the unequal participationof women in mathematics has to proceed from cultural and social structured norms and values,not because they decide for family nor by their intellectual and academic achievements. Iknow that many of us presumed this assertion. But now, we have these data on our hands.And perhaps this paper can illustrate how science works as a social system and how sciencerewards women's participation in a male-dominated world. Perhaps we can learn from it thatvalues and interests form part of science too.Cole, J. R. [1979]: Fair science. Women in the scienti�c community, New York, The FreePress.Jaiswal, R.P. [1993]: Professional Status of Women, Jaipur/New Delhi, Rawat Publications.Oakes, J. [1990] Lost talent: the underparticipation of women, minorities and disabled personsin science, Santa Monica, Ca., Rand.Ogilvie, M.B. [1986]: Women in Science. Antiquity through the Nineteenth Century. Cam-bridge, Mass./Londres. The M.I.T. Press.Osen, L. [1974]: Women in Mathematics, Cambridge, MA., MIT Press.P�erez Sede~no, E. [1996]: \Scienti�c Academic Careers of Women in Spain: History andFacts", in press.Ramaley, J.A. (ed.) [1978] : Cover discrimination and women in the sciences, AAAS selectedsymposium, 14. Westview Press.Rossiter, M. [1978]: \Sexual Segregation in the Sciences: Some Data and a Model", Signs,vol. 4, n 1. - [1982]: Women Scientists in America. Struggles and Strategies to 1940, TheJohn Hopkins University Press.Zuckerman, H., Cole, J. and Bruer, J.T. [1991]: The outer circle, New Haven, Yale Univ.Press. Eulalia P�erez Sede~noUniversidad Complutense { 28040, MadridSpaineulalia@eucmax.sim.ucm.es
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