Proceedings of the seventh EWM meeting

EUROPEAN WOMEN IN MATHEMATICS
Universidad Complutense de Madrid
September 4-9, 1995






Contents

Preface

European Women in Mathematics

EWM on the Web

I History Since Luminy
EWM since its fifth meeting in Luminy

Brief report on the sixth meeting of EWM in Warsaw

IT MADRID 1995: Organization of EWM

Decisions taken during the general assembly

THE MATHEMATICAL PART

The Mathematical part of EWM Meetings

IIT Holomorphic Dynamics

A short course organized by Caroline Series

Holomorphic dynamical systems in the complex plane
An introduction
Bodil Branner

The theory of polynomial-like mappings
— The importance of quadratic polynomials
Niria Fagella

Local properties of the Mandelbrot set A
Similarities between M and Julia sets

11

13

15

21

23

25

27

29

33

35

49



vV

VI

Tan Leil

Classification in Algebraic Geometry
A Short Course organized by Rosa M. Miré6—Roig and Raquel Mallavibarrena

On some notions in algebraic geometry
Margarida Mendes Lopes

On classification of algebraic space curves,
liaison and modules
Mireille Martin-Deschamps

On classification of projective varieties of small codimension
Emilia Mezzetti

Mathematical Physics
Session organised by Sylvie Paycha

Mirror Symmetry
Claire Voisin (written by Sylvie Paycha and Alice Rogers)

Modelling the randomness in physics
Flora Koukiou

Super moduli space

Alice Rogers

Universal measuring coalgebras:
The points of the matter
Marjorie Batchelor

Moduli Spaces
An Interdisciplinary Workshop organized by Sylvie Paycha

Moduli spaces and conformal dynamics
Caroline Series

Moduli spaces and path integrals
in Quantum Field Theory
Sylvie Paycha

Notes on moduli spaces in
Algebraic Geometry
Rosa M. Miré—Roig

63

75

77

85

91

99

101

111

113

121

129

131

135

141



An example of moduli spaces in number theory
Laura Fainsilber

VII Short Talks

149

153

The multidimensional Riemann—Hilbert problem, generalized Knizhnik—

Zamolodchikov equations and applications
Valentina A. Golubeva

Quadratic and hermitian forms over rings
Laura Fainsilber

On Sampling plans for inspection by variables
Vera I. Pagurova

VIII Evaluation

Evaluation of the mathematical aspects of the meeting

OTHER TOPICS
In between meetings: the “everyday” life of EWM
Renormalisation in Mathematics and Physics
Fe-mail/E-mail discussion

Mathematical studies at European universities

IX  Family versus Career

Family versus Career in Women Mathematicians

COMMITTEES, COORDINATORS AND PARTICIPANTS
Committee Members
Coordinators

List of Participants in EWM95

155

156

157

159

161

163

165

167

169

171

177

179

187

189

191

195






Preface to the printed edition

This volume contains records of the mathematical activities and some of the other activities
which took place during the seventh general meeting of European Women in Mathematics at
Universidad Complutense de Madrid, September 4 — 9, 1995.

The meeting was attended by 46 participants from 14 countries (Denmark, England,Finland,
France, Germany, Italy, Norway, Portugal, Rumania, Russia, Spain, Sweden and Switzer-

land).

The main organizers were by far Capi Corrales Rodriganez and Raquel Mallavibarrena
from Madrid. They were assisted by an organizing committee consisting of Bodil Branner
(Denmark), Isabel Labouriau (Portugal), Rosa Maria Mir6-Roig (Spain), Marjatta Naddtdnen
(Finland), Sylvie Paycha (France), Caroline Series (England), Laura Tedeschini-Lalli (Italy).

In organizing the meeting we build on earlier experiences. In particular the work done by
Eva Bayer, Michele Audin and Catherine Goldstein (all from France) around the fifth EWM
meeting in Luminy in December 1991 has been a constant source of inspiration.

We are very grateful for the financial support we received from the spanish Instituto de la
Mujer and the Ministerio de Educacién y Ciencia, both for the Madrid meeting and for the
publication of these Proceedings.

The logo of the EWM meeting and the t-shirt pattern (shown on the front page) was
designed by DODOT.

These Proceedings were edited by Bodil Branner and Nuria Fagella. We thank Christian
Mannes for setting up the TeX style we have used.

The photos were taken by Marketa Novak.

We wish to express our thanks to all participants for making the Madrid meeting a success
and to all who contributed in writing to this volume. Especially we thank Capi and Raquel
for making it all possible.

February, 1996
Bodil Branner and Niria Fagella.

Addendum to the electronic edition

The original version of these proceedings was printed at the Universitat de Barcelona,
with Dep. Legal L 544 - 1996, Impreso Poblagrafic S.L. Av. Estacion s/n Pobla de Segur.

The main difference between the electronic edition and the printed one is that some mis-
prints have been corrected and that the logo designed by DODOT, the photos and the figures
contained in the mathematical papers do not appear here.

If you wish to get a copy of the printed version, please contact your regional coordinator
and ask if some are still available.






European Women in Mathematics

EWM is an affiliation of women bound by a common interest in the position of women in
mathematics. Our purposes are:

— To encourage women to take up and continue their studies in mathematics.

To support women with or desiring careers in research in mathematics or mathematics

related fields.
— To provide a meeting place for these women.

— To foster international scientific communication among women and men in the mathemat-
ical community.

To cooperate with groups and organizations, in Europe and elsewhere, with similar goals.

Our organization was conceived at the International Congress of Mathematicians in Berke-
ley, August 1986, as a result of a panel discussion organized by the Association for Women in
Mathematics, in which several European women mathematicians took part. There have since
been six European meetings: in Paris (1986), in Copenhagen (1987), in Warwick (England)
(1988), in Lisbon (1990), in Marseilles (1991), in Warsaw (1993), and in Madrid (1995). The
next meeting will be in 1997. The place of the meeting will be announced later.

At the time of writing, there are participating members in the following countries:

Belgium, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Italy,
Latvia, Lithuania, the Netherlands, Norway, Poland, Portugal, Romania, Russia, Spain,
Sweden, Switzerland, Turkey, Ukraine, and the United Kingdom; contacts in Albania as
well as with several non-European countries. Activities and publicity within each country
are organized by regional co-ordinators. Each country or region is free to form its own
regional or national organization, taking whatever organizational or legal form is appropriate
to the local circumstances. Such an organization, Femmes et Mathematiques, already exists
in France. Other members are encouraged to consider the possibility of forming such local,
regional or national groups themselves. There is also an e-mail network.

For further information contact:

The secretary of EWM: Riitta Ulmanen,
Department of Mathematics,
P.O.Box 4 (Yliopistonkatu 5),
FIN - 00014, University of Helsinki, Finland;
e-mail: ulmanen@sophie.helsinki.fi,
Tel 358 9 191 22853, Fax 358 9 191 23213

For details of the e-mail network contact:
sarah.rees@newcastle.ac.uk

September, 1995
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EWM on the Web

EWM now has a page on the Web. There are two adresses, although both contain the
same information. One in Helsinki

http://www.math.helsinki.fi/ EWM
and one in Austria
http://www.risc.uni-linz.ac.at /misc-info/ewm /EWM.html

The Web account has been set up by Olga Caprotti, Giovanna Roda, lleana Tomuta and
Daniela Vasaru at

RISC - Linz
Research Institute for Symbolic Computation
Johannes Kepler University
A — 4040 Linz, Austria

They can be reached at the EWM — Web account
ewm@risc.uni-linz.ac.at
or at their personal accounts

FirstName.LastName@risc.uni-linz.ac.at
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EWM since its fifth meeting in Luminy
Caroline Series

University of Warwick, England

The fifth EWM meeting was held in Luminy, France, December 9-13th, 1991. In the
lengthy report which was published of the Luminy meeting, I wrote a brief history of the first
five years of EWM. Since this is the first major EWM report to be published since that time,
I have been asked to write a few words to record what has happened in the interim.

1. The Sixth General Meeting, Warsaw, June 7th-11th 1993

The sixth General EWM Meeting took place at the Technical University in Warsaw from
June Tth-11th 1993. The main organiser was Anna Romanowska. The meeting was attended
by about 60 participants from 16 European countries. The conference featured lectures in
pure and applied mathematics, an interesting session on creativity, and several business ses-
sions. There was a report from the Round Table on women in Mathematics at the European
Congress in 1992. We learned that the proportion of women among doctorates in mathe-
matics is highest in eastern European and Mediterranean countries (Greece, Italy, and Spain
were represented at the conference), and lowest in Scandinavia, the Netherlands, the UK, and
Germany. There has been much speculation about this somewhat counter-intuitive situation,
but it seems more productive to concentrate on how to get more women into mathematics
in the northern countries. Mary Gray gave a talk on the history, aims and activities of the
AWM, and also gave helpful advice about the draft statutes of EWM.

2. Legalisation of EWM and establishment of the Helsinki
Office, 1991-1994

One of our early failures as an organisation, which I mentioned in the report of the Luminy
meeting, was our loose structure in which everything depended on just one person, the inter-
national coordinator. By the time of the Luminy meeting we had decided that it was time
to set in place some more formal organisation, and that we wanted EWM to be a legal body.
During the Luminy meeting we did a lot of work drafting our basic organisational structure
and statutes and a small committee, consisting of Marjatta Ndidtdnen, Riitta Ulmanen and
myself, was formed to carry this work further.

In the course of discussing our statutes we were forced to consider the structure and
function of EWM in great detail. We wanted to make EWM work by consensus, but at
the same time we had learned from experience that it is vital to have a core of central
people responsible for the continuity and smooth functioning of the organisation. This we
achieved by setting up a standing committee, led by a convenor, to deal with executive matters
and in particular in planning the next meeting; regional coordinators to deal with members
and circulate information in their regions; and international coordinators to watch over and
circulate information among the regions. We also established membership procedures and a
method of collecting dues. None of this is easy in an international organisation with members
living in many different circumstances.

At the Warsaw meeting, the General Assembly accepted, with some changes, the statute
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prepared by our committee in consultation with Finnish lawyers. It was here that the fine
details of the structure of membership and fees were hammered out. It was decided to for-
malise membership and start collecting dues from 1994 to pay for the work in Helsinki and our
international activities. There are three rates to allow for the many different circumstances
in which we live. The regional co-ordinators are responsible for collecting this money in local
currency and sending it to the general EWM bank account which is held in Helsinki.

The establishment of EWM as a legal body was finalised on December 2nd 1993. This
was surely an important marker in the history of EWM.

One reason for the choice of Helsinki as the legal seat of EWM was that Helsinki was
already the seat of the European Mathematical Society (EMS). We were very fortunate that
Riitta Ulmanen agreed to be our general secretary. Riitta is librarian in the Mathematics
Department in the University of Helsinki. We made an application form for EWM mem-
bership which regional co-ordinators circulate and collect yearly. The office in Helsinki is an
information centre and it collects and keeps constantly updated information about members,
finances, committees and coordinators. Riitta also answers enquiries about EWM and mails
information to members, usually via the regional coordinators . For a scattered organisation
like ours it is crucial to have a central place where everything is kept together. For the last
two years, Marjatta has obtained funding from the Finnish Ministry of Education and the
Finish Cultural Fundation to support Riitta’s work.

The address and telphone numbers of the EWM Helsinki office have changed recently and
the new address is :
EWM Office, Riitta Ulmanen , Secretary
Department of Mathematics, PO Box 4
Yliopistonkatu 5, FIN-00014
University of Helsinki, Finland
Tel 358 0 191 22853 — Fax 358 0 191 23213
e-mail: ulmanen@sophie.helsinki.fi

3. The European Mathematical Society Committee on Women
and Mathematics

The European Mathematical Society (EMS) was founded in October 1990. Eva Bayer was in-
strumental in setting up and chairing the EMS Committee on Women and Mathematics from
January 1991. Not surprisingly, EWM members, particularly Eva, have played a prominent
role. The committee organised a round table at the first European Congress of Mathematics
in Paris, 1992, which had about 150 participants, 5 short talks, and a lively and interesting
discussion.

The committee made an analysis of the situation of women mathematicians in Germany,
which has one of the lowest proportions of women to men among mathematicians in Europe.
The results, together with a report based on the discussions of the round table, appear in the
1992 Proceedings of the ECM.

In spring 1994, the EMS committee made an extensive inquiry in Switzerland about the
low number of women mathematicians in that country. The results were discussed at the
International Congress of Mathematicians in Ziirich, August 1994. EWM and the EMS
committee also organised a more general discussion about the countries in Kuropean countries
with an unusually low proportion of women mathematicians.
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At the Zurich ICM, there was a very nice “Noether lecture” by the distinguished Russian
woman mathematician O.A. Ladizhenskaya. There was also a panel discussion jointly organ-
ised by AWM, the Canadian women mathematician’s group, and EWM. Reports of these
events may be found in our January 1995 Newsletter Number 2.

The next EMS meeting is to be held in Budapest in summer 1996. Kari Hag is organising
a round table on the topic “Females in Mathematics in the Iberian and Scandanavian Penin-
sulars”. A pleasing number of women speakers have been invited, including Dusa McDuff
who is to give a plenary session.

4. Regional Meetings

We now have regional coordinators in Belgium, Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Italy, Latvia, Lithuania, Netherlands, Norway, Poland,
Portugal, Roumania, Russia, Spain, Sweden, Switzerland, Turkey, Ukraine, United Kingdom.

There have been regional meetings of women mathematicians in, among others, France,
Germany, Russia, Sweden and the UK. Femmes et mathématiques continues to be an impor-
tant and very active organisation in France. During 1995, femmes et mathématiques organised
three general assemblies, two in Paris and one in Lille. On 8th March 1995 -International
women’s day- there were actions in seven universities on the theme Women in mathematics.
In 1996, several events are planned including a one day forum for young women mathemati-
cians in Paris in January and a general assembly in March in Rennes. The Russian Women
Mathematicians Association (RMWA) was founded at a conference in May 1993 in Suzdal
and already has more than 300 members from more than 40 cities of Russia and the FSU. A
second International conference took place in Voronezh in May 1995 and the third is planned
for Volgograd in May 1996 (see below). An EWM group, AIDIM, associazione italiana donne
in matematica, has been formed in Italy which has about 30 official members with more
interested. This group took part in a congress in Anacapri in 1994 where it presented its
purposes and proposed some topics for discussion. The British group BWM organised a very
successful one day meeting in London in September 1995 attended by 50 women from all over
the UK. There is also a functioning inter-uk email network.

The German group is also active: there is an e-mail net managed from Magdeburg with
about 150 participants, where there is also an ftp-server with information about EWM. A
data-base of women mathematicians with a Habilitation in Germany since Emmy Noether
has been set up. There have been some local meetings; in 1994 there was a “Women and
Mathematics” meeting in Oberwolfach organized by Catherine Bantle (Basel) in which a large
EWM group participated.

5. The e-mail network

For some time we have relied heavily for our communications on the email network set up by
Laura Tedeschini—Lalli in Italy. This is a very easy and efficient method of communicating and
saves much time and expense. In Madrid, Sarah Rees offered to reorganise and administer
the network from her university in Newcastle. She has now set up a new network and
hopes eventually to have subnets for each individual country or region. To join, mail her at
sarah.rees@newcastle.ac.uk
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6. The Newsletter

We have been talking for a long time about starting a newsletter, and three issues, roughly
one per year, have now appeared. The newsletter is being edited by Cathy Hobbs and Marlen
Fritsche. It is distributed via the regional coordinators and in addition is sent by email, in
Tex and plain versions , to all on our network. You are sent a copy automatically on joining
the network, otherwise copies hard or electronic can be obtained from the Helsinki office.

7. The Seventh General Meeting, Madrid, September 4-9th,
1995

Since the rest of this report is about the Madrid meeting, I shall not say anything here. 1
would just like to note that we were very pleased that Capi Corrales managed to get funding
for a planning meeting of the organising committee, including five non-Spanish members,
who came to Madrid in November 1994. Hosted by Capi in her spacious apartment, the
committee was able to spend an entire whole weekend, from early till late, discussing and
planning all aspects of the conference. This meant that the wider international committee
could take a really active and informed part in organising the meeting and were much better
able to support the Spanish organisers throughout the process. This kind of support for the
local organisers is invaluable and ideally we should try to have such a pre-meeting before
every large meeting.

8. The future

One of our main aims should certainly be to continue to develop more regional activities.
These are easier and cheaper to organise than big international events, and can be attended
relatively easily by members who cannot get to the international meetings. They can relate
to local needs and are in people’s own language. Already a number of activities of this kind
are lined up for the coming year. Besides the Budapest meeting mentioned above, EWM is
organising, jointly with femmes et mathématiques, an interdisciplinary two day workshop
on Renormalisation from June 14th-15th 1996 in Paris. There will also be a joint Franco-
Russian meeting organised by femmes et mathématiques and the Russian Association for
Women Mathematicians (RAWM) in Marseille in December 1996. The British group BWM
is planning another one day meeting in London next September. The third major meeting
of the Russian Association is planned for May 27-31, 1996 in Volgograd. It will part of an
international forum on “Problems of survival” under the title “Mathematics, modelling and
ecology”. For details contact the organiser Prof. G. Riznichenko, riznich@orgmath.msk.su.
The German group is planning a long weekend in June 1996.

On the international level, to facilitate the flow of information, we are hoping to set up
an Internet page.

One of our main problems is money, and if we could find some funding on a steady basis it
would take a huge burden off the organisers. Funding meetings is a big problem which ideally
should be taken care of well in advance. We feel we should be able to get more funding from
the EC, but it takes hard work and persistence to put in applications. We badly need people
to help in this work. We also need more people to sign up as members and pay their dues
so that we can be more active and have more secure ongoing support for our international
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work.

As EWM becomes more established, it is very pleasing to see that many people already
see us as an established smoothly running organisation. They expect that EWM will be able
to answer queries, produce statistics, organise conferences, and put in place networks and
support systems and opportunities for women to meet. Of course we are very glad to be seen
in this role, and this is indeed exactly what our original vision was about, but keeping it all
going is still hard work. We badly need more people to come forward to take part in running
the organisation. There are many jobs, small and large, to be done. Although hard work,
this has many rewards as one gets to know and cooperate with women mathematicians from
all over Europe, and perhaps it is really the best way to find out what our network is all
about.

In short, although there are still many problems and shortcomings in our organisation,
we are spreading, I believe that people are beginning to take us for granted, and that means
that we have arrived to stay!
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Brief report on the sixth meeting of EWM in Warsaw
June 7th-11th, 1993

The meeting was attended by about 60 participants from 16 European countries: Den-
mark, Finland, France, Germany, Greece, Italy, Lithuania, the Netherlands, Norway, Poland,
Portugal, Russia, Spain, Sweden, Turkey, Ukraine. Mary Gray from the USA came as a rep-
resentative of the Association for Women in Mathematics, of which she is one of the founding
members. The main organiser of the meeting was Anna Romanowska of the Technical Uni-
versity, Warsaw.

1. Mathematical Programme

There were mathematical talks by

— Danuta Preworska-Rolewicz (Warsaw): “Differential calculus as calculus”;

Janina Kotus (Warsaw): “Fractals arising in holomorphic dynamical systems”;

Viviane Baladi (Lyon): “Some recent results on random perturbations of dynamical sys-
tems”;

Krystyna Kuperberg (Auburn, Florida): “The recent revival of continuum theory”;

— Ina Kersten (Bielefeld): “Linear algebraic groups”;

Zofia Adamowicz (Warsaw): “On real closed fields”.

There was also a poster session in which participants presented aspects of their work.

2. General Discussions

As decided at the previous EWM meeting, the non-mathematical theme was Creativity,
organised by Coby Geijsel. There were two talks:

— Coby Geijsel (Amsterdam): “Images of creativity”

— Karin Kwast (Amsterdam): “Creativity, a case study”

These were followed by discussions in small groups. Other activities were a report on the

Round Table on “Women in Mathematics” which took place at the European Mathematical
Congress in Paris 1992; a talk by Mary Gray on the history, aims and activities of the
AWM and one by Krystyna Kuperberg, a Polish mathematician who has settled in the USA,
comparing the academic environment for women mathematicians in Poland, Sweden and the
USA. There was also a discussion on the situation of women mathematicians in the former

socialistic countries. Moreover the programme included a talk by Vassiliki Farmaki (Athens):
“Women mathematicians in Ancient Greece”, and a talk by Magdalena Jaroszewska (Poznan):

“Olga Taudsky-Todd”.



22

3. Organisation of EWM and the General Assembly

Following the decision in Luminy to go forward with the establishment of EWM as a legal
body, much work had been done, mainly by Caroline Series and by Marjatta Nadtanen and
Riitta Ulmanen of Helsinki in consultation with Finnish lawyers, on preparing a draft of the
statutes. This draft was presented to the general assembly and, following detailed discussion,
the essentials were accepted with some changes. There will be two categories of membership,
supporting members and full members. Supporting members can come to meetings but not
vote, and men can only join as supporting members. The suggestion of this formulation was
made by Mary Gray, who in addition to her long association with AWM is a lawyer as well
as a mathematician. The legalisation committee was asked to prepare a final version of the
statutes and the legalisation was completed by December 2nd of 1993. The legal seat of EWM
will be in Helsinki in Finland where Riitta Ulmanen as the secretary will have an office for
EWM at the Department of Mathematics at University of Helsinki. There was considerable

discussion on the knotty problem of membership fees and how to collect them. It was decided
to start charging membership fees from 1994 after legalisation is complete with 3 rates (low:
1 ECU, standard: 20 ECU, high: 50 ECU) (1 ECU equals approximately 1 US dollar).
The regional co-ordinators should be responsible for collecting the money and sending it (or
part of it) to a general account. The general assembly also appointed new co-ordinators,

convenors and standing committee, for details see the names and committees list. The new
convenor of the standing committee is Anna Romanowska and the international co-ordinators
are Capi Corrales (west), Marketa Novak (central), Inna Berezowskaya and Marie Demlova
(east). There will be some joint activity of AWM and EWM at the International Congress

of Mathematicians in Ziirich, August 1994. This is being organised by Cora Sadosky, the
president of AWM, and Eva Bayer. Since the Warsaw meeting it has been decided that the

next EWM meeting will be planned to take place in Madrid in July 1995 with Mariemi Alonso
(Madrid), Capi Corrales (Madrid) and Rosa Maria Miro (Barcelona) as the main organisers.
It is likely that the 1997 meeting can be in Germany.

4. Organising Committees

The Warsaw meeting was organised by the EWM standing committee consisting of Polyna
Agranovich (Ukraine), Mariemi Alonso (Spain), Eva Bayer (France), Bodil Branner (Den-
mark), Jacqueline Detraz (France), Sandra Hayes (Germany), Magdalena Jaroszewska (Poland),
Anna Romanowska (Poland), Barbara Roszkowska (Poland), and Caroline Series (England).
The local organising committee consisted of Elzbieta Ferenstein, Irmina Herburt, Felicja

Okulicka, Ewa Pawelec, Agata Pilitowska, Anna Romanowska, Barbara Roszkowska, and
Krystyna Twardowska. The meeting was financially supported by the Technical Univer-

sity of Warsaw, in particular the Dean of the Department of Technical Physics and Applied
Mathematics, and by the money left after the third EWM Meeting in Warwick.



MADRID 1995

Organization of EWM

Following the statutes of EWM a general assembly was held during this meeting. The
decisions taken are valid until the next general assembly which should take place during the
next general meeting of EWM planned for 1997 in ICTP, Trieste.
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Decisions taken during the general assembly

Riitta Ulmanen (based on notes taken by her and Karin Bauer)

1 The General Assembly was chaired by Marketa Novak from Sweden who wished everyone
present welcome to the General Assembly. The General Assembly was announced in
the EWM Newsletter in February 1995 and earlier in separate announcements of the
Madrid meeting. Thus the requirements for the announcement of the General Assembly

were met and the meeting was valid.

Riitta Ulmanen presented an agenda which was approved as the working procedure of
the meeting (Appendix 1)

2 Approving new members

Because this was the first meeting since Furopean Women in Mathematics became an
official body everybody would be a new member.

It was decided to approve everyone who had sent her application either to her regional
coordinator or to Riitta Ulmanen or who would leave her application form at the General
Assembly meeting as a member of the EWM.

N

Electing international coordinators

The following persons were elected as the international coordinators
East: Marie Demlova; Central: Marketa Novak and Inna Berezowskaya;

West: Capi Corrales Rodriganez

3 Confirming regional coordinators

Regional coordinators were confirmed (see XIII).

4 Electing two auditors and a deputy

Seija Kamari and Kirsi Peltonen were elected as auditors for 1996-97. Marja Kankaan-
rinta was elected to be the deputy auditor. They all are from Finland.

5 Confirming the financial statement and discharging those responsible of liabilities

Marjatta Nditanen explained briefly the financial situation of EWM.

Riitta Ulmanen read aloud the financial statement. It was confirmed by the General
Assembly and those responsible of liabilities were discharged.

=2}

Choosing the place and time for the next meeting

The General Assembly decided to have the next meeting of EWM in 1997. The month
was not set yet. The Nordic countries would be responsible for organizing the meeting
and it was decided that they choose the place and set the time after that. (It has since
been decided that the next meeting is to be held at ICTP, Trieste; the time will be
anounced later.)

Also the possibility of Germany organizing the meeting in 1999 was discussed.
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7 Electing the Standing Committee and convenor for 1995-97

According to the statutes the Standing Committee consists of 8 - 12 members. The
term of a member is four years. Half of the terms will expire at the general assembly
meeting and half will continue. After a lively discussion the Standing Committee was
elected as follows:

From the Standing Committee for 1993-95 were elected

- Polyna Agranovich, Ukraine
- Bodil Branner, Denmark

- Capi Corrales Rodriganez, Spain

Marjatta Nidtanen, Finland

- Rosa Maria Miro-Roig, Spain

Caroline Series, United Kingdom
As new members:

- Valentina Barucci, Italy
Marie Demlova, Check Republic

Laura Fainsilber, France

Sylvie Paycha, France

Ragni Piene, Norway

An election of an additional member was left to the Standing Committee to be made
later. (Emilia Mezzetti, Italy, has since been included.)
Sylvie Paycha was elected to be the Convenor and Capi Corrales Rodriganez to be the

Deputy Convenor. Marjatta Naatanen was appointed Treasurer.

8 Minutes of the previous General Assembly

EWM became an official body in December 1993 and the previous meeting was in June
1993 in Warsaw. It was decided to accept the brief report made from the Warsaw
meeting as the minutes and to approve it.

9 Deciding fees

It was decided to keep the fees as they were: 1 ECU (low), 20 ECU (standard), and 50
ECU (high).

The question of how to collect the fees and how to send it to EWM was raised. Marjatta
N&itidnen explained that every regional coordinator collects the fees whichever way is
most convenient for her. She may open an account for that purpose. After making
deductions necessary for local use she then sends the rest to the EWM account in
Finland either in her own currency or in Finnish currency.

10 Setting up committees for specific issues

The decisions made appear in the list of committee members at the end of this volume.



THE MATHEMATICAL PART

The mathematical programme constituted the main part of the EWM meeting and simi-
larly the mathematical papers form the main part of these Proceedings.

Included is a description of the philosophy behind the organization of the mathematical
part, edited versions of ten lectures given on the three chosen topics (Holomorphic Dynamics,
Algebraic Geometry and Mathematical Physics) and of four contributions which formed the
basis of an interdisciplinary discussion (on Moduli Spaces), abstracts of three shorter talks
and at the end an evaluation of the mathematical aspects of the programme.
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The Mathematical part of EWM Meetings

Capi Corrales and Laura Tedeschini Lalli

The organization of the scientific part of an EWM meeting is quite different from that of
most mathematical meetings. Starting at the EWM meeting in Luminy in 1991 we decided
to experiment with the format trying to reach the following main goals: to learn mathematics
which is new to us; to learn how to transmit mathematics; to learn how to discuss mathematics
with other mathematicians not necessarily specialists in the same field as we are; and finally
to be able to establish scientific links which women, isolated for a number of reasons, can
refer to at any stage in their professional career. We have been using the following structure
as a model.

1. Before the meeting

Step 1: A scientific committee, chosen by the standing committee of EWM, selects three
topics in mathematics. Several considerations are taken into account when choosing the
topics:

— the topics should be in the avantgarde of current research;

— the topics should involve beautiful mathematics;

— the topics should try to include also branches of mathematics where, historically, for what-
ever reasons, the presence of women seems more difficult to detect.

Step 2: Once the topics are chosen, the scientific committee chooses a coordinator for each
topic. Several considerations are taken into account when choosing the coordinators:

— their knowledge of the field;

— their commitment to the project of making the transmission of mathematics a main goal
of their work;

— their ability and will to work in team with others.

Step 3: The coordinator selects the speakers for her topic. Several considerations are taken
into account when choosing the speakers:

— their knowledge of the field;

— their ability, or their will to improve their ability, to transmit knowledge.

Step 4: Coordinators and speaker work together as a team in preparing the talks. The
different talks form a whole, and the level of difficulty should be progressive. Once a speaker
has been assigned a talk she is invited to give a written draft of her lecture to the coordinator.
To ensure crossfield dissemination, and, above all, understandability, the coordinator then
distributes these drafts among a few women mathematicians NOT specialists in the topic,
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who will read them and point out passages where assumptions are taken for granted, or
needing an example, or otherwise remaining obscure, etc. We call the crucial function of these
professionals “stupid readers”, or “naive readers”. The coordinator sends the comments of
the non-specialists back to the speakers. The speakers make the appropriate corrections and
changes and return the text to the coordinators, who send them again to the readers for a

final check.

2. The lectures

Many are the questions that frame our work within the mathematical talks. Here are a few
of them:

how do we create an atmosphere in which the audience feels free to ask questions?

how do we balance the inevitably different levels of knowledge about the topic in a general
mathematical audience?

how do we balance the flow of questions with the flow of the speaker?

how do we manage to be understood by non-specialists without decaffeinating our exposi-
tions?

— mathematics is difficult; how can we make something clear and at the same time keep its
richness, depth and not hide its difficulties?

Common sense is a main tool we count on, but we know it is not sufficient. Common
sense, patience, and, as scientists, the will and inclination to experiment, try and find by
searching. Several strategies have been tested, and as our experience develops, so does the
number of strategies that we see work adequately towards answering the above questions.
Here are a few:

— one or two women volunteer to concentrate to their fullest ability in the talk and ask
questions when they do not follow the speaker, or think this is the case for many in
the audience. We label this other crucial function “planted idiots”. We think it works
best if the planted idiot is actually naive in the field. Other questions are welcome as
always;

— the speaker knows ahead of time that when a question is posed by someone in the audience,
if someone else knows a more clear or direct way of answering it, this person will speak
up. In this way the flow and rhythm of the talk is easier to mantain; and, since the
speaker knows this might happen, she does not feel intruded or judged when it does;

— if interdisciplinary connections or other interesting discussions start taking place along the
course of a talk, the coordinator of that topic should channel it into organizing a side
discussion later, making sure there is a time and a space allowed for it and announced.
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3. Writing and publishing the lectures

It is our experience that this is the step where we should be more cautious, since mathemati-
cians have the habit of writing only for specialists. Hence, a process analogue to that of step
4 (before the meeting) is followed: each speaker sends a draft of the text to the coordinator.
The coordinator should distribute this draft again among “naive readers”, who will make
sure the text is faithful to the version and comments agreed on before the actual talk. The
coordinator receives the comments of the non-specialists and sends them back to the speaker.
The speaker makes the appropriate corrections and returns the new corrected text to the
coordinator, who, in turn, sends them again to the readers for a final check.

4. Conclusion

As one can deduce from the above summary, the mathematical part of an EWM meeting is
conceived as a learning experience for ALL THE PERSONS taking part in it. Ideally:

— everyone will learn new mathematics, even the specialists. The advantage of speaking
clearly to an interdisciplinary audience of mathematicians is that such situation rarely
fails to give as fruit the bringing out of connections or points of view thus far unknown
to us;

— the speakers will improve their ability as lecturers and mathematical writers;

— everyone will improve her ability to speak about what she works on.

Unfortunately, it is still the case in many European universities that women are singulari-
ties within the mathematical departments. Frequently this has a well known inhibiting effect
on us, resulting in lack of self-consciousness or defensiveness, both particularly negative when
we start our professional path. And if we are inhibited, we do not speak about mathematics,
and if we do not speak about mathematics we do not learn how to speak about mathematics,
and the loop traps us. The vicious circle of communication, well-known to many, creates a
steady isolation which becomes sterile and depressing, as opposed to the temporary isolation
which is necessary to all creative work. In fact, we think many problems arise for women in
mathematical research from the different types of isolation (communication, life passages...)
adding to the second, necessary one, and making it seem unbearable.

5. Other forms: The Interdisciplinary workshops

As we went on planning this EWM meeting we came along words which seem to have differ-
ent meaning in different branches of mathematics. But often the use of the same words in
mathematics points to a common root, a core idea. We think (!) it is one of our original con-
tributions to organize workshops around a word, or an idea, to re-walk paths and rediscover,
if not build, common ground on both language and conceptual basis. The first such encounter
took place in Madrid, on “Moduli spaces”, with speakers from algebraic geometry, number
theory, hyperbolic geometry and quantum field theory. In Madrid the next interdisciplinary
workshop was put forward, on the words “Renormalization Group”. It will hopefully take
place in June, 1996 in Paris, with contributions from statistical physics, quantum field theory,
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markov processes, holomorphic dynamics and real dynamical systems. These workshops are
kept more informal, with several persons responsible for illustrating what they deem neces-
sary to the core idea, or the strength of the results that follow in their field. Everybody else
is welcome to “pitch in” in workshop style.

6. Poster sessions

Up to now, we have only once experienced a “poster session”. We think it is quite a challenge
to our creativity to rethink poster sessions in a way that makes them a good communication
tool. We are working on it.



Holomorphic Dynamics

A short course organized by Caroline Series

The aim of the session was to present some of the basic facts and techniques in holomorphic
dynamical systems, in particular those defined through iteration in the complex plane of
complex polynomials or polynomial-like mappings. All three talks discussed different aspects
concerning dynamical behaviours in the dynamical plane as well as properties of families of
such maps, represented in a parameter plane.

The first talk given by Bodil Branner was an introduction, emphasizing the classical notion
of normal families and its importance in the dynamical plane and the parameter plane (of
quadratic polynomials) in relation to Julia sets, and, respectively, the Mandelbrot set.

The second talk given by Niria Fagella focused on polynomial-like mappings and families
of such, in particular Mandelbrot-like families, showing the importance of polynomials as
local models of more general analytic maps.

The third talk given by Tan Lei discussed two examples of transfer of results from the
dynamical planes to the parameter plane, namely asymptotic self—similarities of Julia sets and
the Mandelbrot set, and the Hausdorff dimension of certain Julia sets and of the boundary
of the Mandelbrot set.

Bodil Branner
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1. A short historic note

The study of complex analytic dynamics began at the end of the previous century. The work
(by Ernst Schréder, Leopold Leau, Gabriel Koenigs, Lucyan Bottcher and others) was focused
on the local behavior of a complex analytic function (also called a holomorphic function) near
a fixed point. With the work of first Arthur Caley and later Pierre Fatou and Gaston Julia
the focus changed from local to global behavior.

Fatou and Julia studied — independently of each other — iteration of rational functions.
A rational function f(z) = p(z)/q(z) is the quotient of two polynomials p and ¢ which are
supposed to be relatively prime. The degree d of f is defined as the maximum value of the
degrees of the polynomials p and ¢. A rational function can be viewed as a map f : CoC
where C = CU {oc} denotes the extended complex plane, the Riemann sphere.

Figure 1: The Riemann sphere.

A rational function is holomorphic, and on the other hand, any holomorphic map f : C—
C is a rational function. If d > 1 then f is surjective; in fact each point has d preimages
(counted with multiplicity). Degree d = 1 corresponds to automorphisms of the Riemann
sphere, the so called Mdbius transformations, and degree d > 2 gives rise to interesting

dynamical systems.
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Both Fatou and Julia made (1918 — 1920) intensive use of the theory of normal families
which had just been introduced and developed by Paul Montel (1912 — 1917) at the time.
For a detailed description of the early history, see [A].

Only few papers were published on complex dynamics between 1930 and 1980. But the
subject is again a very active area of research. Several new ideas and tools were introduced
in the beginning of the eighties. Among them are computer graphics, quasi-conformal map-
pings (introduced by Dennis Sullivan), polynomial-like mappings and transfer of results from
dynamical plane to parameter space (introduced by Adrien Douady and John H. Hubbard).

In this short series of papers we will give examples of the above ideas and tools. This
first paper contains basic definitions and results. There are very few proofs. Those which are
sketched are chosen to illustrate the concept of normal families and to stress the importance
of repelling periodic points.

2. Polynomials

In the rest of the paper we restrict our attention to polynomials of degree d > 2. Polynomials
are exactly those rational functions with the property that f(o0o) = co = f71(00). But most
often we just think of a polynomial as acting in the complex plane.

To study a polynomial P as a dynamical system means to study the long term behavior
for different seeds zy of the sequence

20,21 = P(20), .., 2n = P(zn—1) = P"(20), .- -,

called the orbit of zy under iteration. The dynamics take place in the z-plane, the dynamical
plane.

The goal is both to understand each individual dynamical system for a fixed polynomial
P, and to understand how the systems change qualitatively with the polynomial.

In order to understand the dynamics of all polynomials of degree d it is sufficient to
consider monic, centered polynomials of the form

P(z) = 214 Cd_QZd_2 + -tz +cg;

any polynomial F of degree d is namely conjugate to a polynomial of this form through a
global affine coordinate change z — az + b,a # 0. In other words, the following diagram is

commutative
F
C —— C
z»—)az—l—bl lz»—)az‘—l—b
C —— C
P

We identify the set of monic, centered polynomials with the parameter space C—' =

{(c4=2,-..,¢c0)}. The polynomials are called centered since the critical points are centered,
i.e.
> o
weQ(P)

where Q(P) denotes the set of critical points, i.e. Q(P) = {z € C| P'(z) = 0}.
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The monic, centered quadratic polynomials are of the form
Q.(2)=2*+¢

with one critical point w = 0. All the examples we give, will be from this family of quadratic
polynomials. The family is identified with C, the c-plane, also called the parameter plane; it
should not be confused with the dynamical plane.

3. The Julia set, the filled Julia set and the Fatou set

For each polynomial P the dynamical plane is decomposed into two complementary sets: the
set of points with bounded orbit and the set of points whose orbit tends to co. We denote by
K(P) the filled Julia set, that is the set of seeds with bounded orbit

K(P)={z€C| P"(z) - 00 as n — o0}.
We denote by Ap(oo) the set of seeds with orbit tending to oo:
Ap(o0) ={2€ C| P"(z) — 0o as n — oo}.

The set Ap(o0) is called the attractive basin of co. Both sets are completely invariant under
iteration, i.e. under both forward and backward iteration. The common boundary

OK (P) = dAp(c0) = J(P)

is called the Julia set.
Figure 2 shows in black the Julia sets for different quadratic polynomials Q..

Example. Consider the simplest quadratic polynomial Qo(z) = z%. The filled Julia set
K(Qo) equals D, the closure of the unit disk; the attractive basin Ag,(oc0) equals C\ D, the
exterior of the closed unit disk, and the Julia set J(Qo) equals S!, the unit circle.

The above definition of the Julia set is simple, but only valid for polynomials. Many
results about Julia sets can only be obtained from the classical and general definition of Julia
sets, using the concept of complex analytic normal families. We therefore give this definition
as well.

Normal family. Let U C C be an arbitrary domain. A family F = {f; : U — C};cs of
analytic functions is said to be normal if any infinite sequence of functions from F contain a
subsequence that either converges in C or tends to oo, uniformly on each compact subset of
U.

In complex dynamics we are interested in the families 7(U) = {P" |y: U — C},>0 of
iterates of the polynomial in question, restricted to arbitrary domains U.

A point z € C is said to be normal if there exists a neighborhood U of z such that the
family F(U) = {P" |u}n>0 is normal.
Definition. The Fatou set F'(P) is the set of normality, that is F/(P) = {z € C | z normal },
and the Julia set J(P) is the complement of F'(P) or the set of non-normality. A connected
component of the open set F(P) is called a Fatou component.

Note that the filled Julia set is the Julia set filled with all the bounded Fatou components.

Example (revisited). Consider again the quadratic polynomial Qq(z) = 2%. The family F (D)
is normal, since each subsequence of the iterates restricted to D converges to the constant
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Figure 2: Julia sets of the polynomials @, for different values of c.

Bodil Branner
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function equal to 0, uniformly on any compact set D, = {z € C | |z| < r} with 0 < r < 1. The
family F(C\D) is normal, since each subsequence of the iterates restricted to C\ D converges
to the constant function equal to oo, uniformly on any set C\ Dg = {z € C | |z| > R} with
R > 1. No point on the unit circle is normal. The Fatou set is therefore C\ S, and the Julia
set as before.

Montel proved a useful criterion for normality.

Montel’s criterion. Simplest form: Any family of analytic functions defined on a domain
U taking values in the plane minus two points, C\ {a, b}, is normal.

Generalized form: Let h; : U — C, j = 1,2, be two analytic functions, satisfying hq(z) #
ha(z) for all z € U. Any family of analytic functions defined on U with values at any z € U
which differ from hq(z) and hz(z) is normal.

Note that it follows, that for any neighborhood U of a point in the Julia set the union of
orbits which start in U, J,»q P"(U), is equal to C except at most one point. Using this
property one can prove that the Julia set is a perfect set, that is a closed set where any point
is a limit point in the set; the Julia set has therefore no isolated points.

4. Periodic and preperiodic points
A point zg is called p-periodic if
zp = 29 and z; # zo for 0 < j < p;

a fized point is a l-periodic point and a p-periodic point is a fixed point of PP. A periodic
orbit is called a cycle. A point zg is called preperiodic of preperiod k > 1 and period p if

Zg4p = 2k is a p-periodic point and z; # 2, for 0 < j <k,

see figure 3.

Figure 3: Periodic and preperiodic orbits.

The multiplier p of a p-periodic point zg is defined as the derivative of PP at zy. Using the
chain rule we obtain

p=(P")(20) = P'(zp-1) - -+ P'(z0);
the derivative of PP is therefore the same at all points of the cycle. For this reason p is also
called the multiplier of the cycle.
We call a cycle
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1. attracting if |p| < 1;
2. superattracting if p = 0;
3. repelling if |p| > 1;

4. indifferent if |p| = 1.

Note that a cycle is superattracting if and only if it contains a critical point.

An indifferent cycle has multiplier of the form p = €2™. The cycle is called rationally
indifferent or parabolic if 8 is rational, and irrationally indifferent otherwise.

A periodic point zg of period p is called linearizable if there exists a local holomorphic
change of coordinates so that PP in these coordinates is of the form ¢ — p¢ where p is the
multiplier.

Theorem 1 (Koenigs) An attracting, but not superattracting periodic point is linearizable.
A repelling periodic point is linearizable.

Proof. A sketch. Assume zy = 0 is an attracting, but not superattracting, fixed point. Since
0 <| p |< 1 there is a neighborhood U of 0 such that P(U) C U. Set ¢, (z) = P"(z)/p" for
z € U. Then

#n(P(2)) = pentr(2).

The holomorphic functions ¢,, converge in U, uniformly on compact subsets, to a holomorphic
map ¢ with derivative ¢'(zp) = 1, defining the required local coordinate change.

For a repelling fixed point we reduce the situation to the above, by considering the branch
of P~1 which fixes the fixed point.

For periodic points of period p we consider PP instead of P. ]

The linearizing coordinates are uniquely determined with the extra requirement: ¢’(zp) =
1.

Note that it follows from the implicit function theorem that a p-periodic point with multi-

plier |p| > 1 can be followed analytically in the parameters in a neighborhood of the polyno-
mial, and in a sufficiently small neighborhood the point remains a p-periodic repelling point.
Moreover, the linearizing coordinates vary analytically with the parameters.
Example. Consider again Qo(z) = 2%. The point zg = 1 is a repelling fixed point with
multiplier p = 2. Set ¢(z) = Log z, the principal branch of the logarithm defined in the
domain C\ {z € C | Rez <0, Imz = 0}. Then ¢ is the linearizing coordinate change. For
z=re?™ r>0,-7/2 <t < 7/2 we have

¢(Qo(2)) = pep(2) and (1) = 1.

The fixed points for the quadratic polynomials Q). are solutions to 22 + ¢ = 2, hence of the
form z = 1/2 4+ 1/1/4 — ¢. The analytic continuation of the repelling fixed point zy = 1 is
given by ¢+— 1/2+4 1/1/4 — ¢ where Vv denotes the principal branch of the root function.

A superattracting periodic point zg is of course not linearizable. In the superattracting
case there exists a coordinate change so that PP in these coordinates is of the form ¢ — ¢*
where k is the smallest integer n for which the n-th derivative of PP at zg is different from
0. Such coordinates play an important role in the analysis of the local behavior around
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superattracting orbits; in particular around oo which is a superattracting fixed point for
all polynomials. For a monic polynomial the coordinates are uniquely determined with the
extra requirement ¢(z)/z — 1 as z — oco. They are called Béttcher coordinates and provide a
coordinate change so that P in these coordinates is of the form ¢ — (¢ where d is the degree
of the polynomial.

To finish the list: A rationally indifferent periodic point zg is not linearizable. An irra-
tionally indifferent periodic point zg is called Siegel if it is linearizable and Cremer if it is
not.

A periodic point is contained in the Fatou set if it is attracting or Siegel. All other periodic
points are contained in the Julia set. The repelling periodic points are of special interest.

Theorem 2 The Julia set is the closure of the repelling periodic points.

The theorem corresponds to Julia’s definition of the Julia set, while Fatou used the concept
of normal families.

Proof. The proof has two steps:
Step 1. The Julia set is contained in the closure of the periodic points.
Step 2. There are only finitely many non-repelling cycles.

We sketch the first step, and comment on the second step at the end of the next section.
Assume the statement is false. Then there exists a point zg € J(P) and a neighborhood U of
zg without any periodic points. We may assume that zg is not a critical value (the image of
a critical point) since there are only finitely many critical values for P. Furthermore we may
assume that P has a local inverse h; defined on U with by (U) and U disjoint. Set hy(z) = z.
It follows that the family F(U) = {P" |v},>0 satisfies Montel’s normality criterion with
respect to the two analytic functions hj;,j = 1,2. This contradicts that 2z is in J(P) and
therefore a non-normal point. ]

5. Classification of periodic Fatou components

A Fatou component is mapped onto a Fatou component by P. We call a Fatou component
V periodic if PP(V) = V for some p > 0, preperiodic if P*(V) is periodic for some k& > 0
and wandering otherwise. For a polynomial the attracting basin of oo is always a periodic
Fatou component of period 1. For a polynomial the different possibilities are listed in the
classification theorem below.

Theorem 3 Let V denote a bounded, periodic Fatou component of period p. Then V is one
of the following three types:

1. Attracting basin. There is a p-periodic attracting point zo € V' and all points in V
converge to zo under iteration of PF.

2. Parabolic basin. There is a parabolic point zo € 0V, which is fized under PP and
satisfies (PP)(z9) = 1, and all points in V' converge to zy under iteration of PP. (Note
that the period pg of the periodic point zg may be a divisor of p, and the multiplier of
zg a root of unity which raised to the power p/py equals 1.)
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3. Siegel disk. There is a p-periodic irrationally indifferent point zo € V which is lineariz-
able, the linearizing coordinates are defined on V' and the iterate PP in these coordinates

expressed as the irrational rotation  — e*™9C where p = €*™ is the multiplier.

In figure 4 we show examples of the three types above. A superattracting basin is also
called a Béttcher domain and an attracting (but not superattracting) is called a Schréder
domain. A Parabolic basin is also called a Leau domain.

Already Fatou made an exhaustive list of possible types of Fatou components, including
the possibility of wandering components. Only the first two possibilities in the classification
theorem were known by Fatou to exist, the existence of the third was proved by Carl Siegel
in 1942.

The final break through came when Sullivan in 1982 proved the following theorem, using
quasi-conformal mappings.

Theorem 4 (Sullivan) There are no wandering Fatou components for a rational function.

The non-wandering theorem implies that any Fatou component is either itself periodic of
one of the above mentioned three types or eventually mapped onto such a periodic Fatou
component.

Relation to critical points. Each type of periodic Fatou components is related to a critical
point. Let V' be a p-periodic Fatou components as above, and set V = Uf;é PI(V). If Vis
an attracting basin or a parabolic basin then V contains a critical point (compare with figure
4). If V is a Siegel disk then the boundary of V is contained in the closure of the orbit of a
critical point.

Note that this implies that a polynomial of degree d can have at most d — 1 cycles which
are attracting or parabolic. The statement is in fact also true if we add Cremer and Siegel
cycles to the list. (The proof is using the notion of polynomial-like mappings.) A polynomial
of degree d can therefore have at most d — 1 non-repelling cycles.

It also follows from the classification theorem that if none of the critical points are attracted
to attracting or parabolic cycles and if there are no Siegel disks, then K(P) = J(P). For
quadratic polynomials this happens for instance if the critical point is preperiodic. Such a
polynomial is called a Misiurewicz polynomial. The periodic orbit which the critical point
eventually lands on, is always repelling.

6. Hausdorff distance and dependence of Julia sets and filled
Julia sets on the polynomial

Both the filled Julia set and the Julia set are non-empty compact sets in the complex plane.
The Hausdorff distance Dy defines a metric in the set Comp*(C) of non-empty compact
subsets of the complex plane. Given this metric, one can discuss whether the filled Julia set
K(P) and the Julia set .J(P) depend continuously on the polynomial or not.

Hausdorff distance. Let d denote the Euclidean distance in C, and define for A, B €
Comp*(C)
d(A, B) =supd(a, B)
a€A
and

Di(A, B) = max(3(A, B),6(B, A)).
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Figure 4: The three different types of Fatou domains: attracting, parabolic and Siegel.

43



44 Bodil Branner

Observe that it follows from the definition of § that for any ¢ > 0
A, B)<e < ACB.

where B, is the e-neighborhood of B, i.e. B, = {z € C|d(z, B) < €}. Moreover, the triangular
inequality holds, i.e.

0(A,C) < (A, B)+46(B,C) for all A, B,C € Comp*(C).

With these two properties of ¢ it follows that Dy is a metric in the space Comp*(C), in fact
a complete metric.

Note that (,5(147 Bl) 2 (,5(147 BQ) if B1 C BQ.

The filled Julia set and the Julia set do not in general depend continuously on the poly-
nomial. The general statement is formulated in the following theorem where the polynomials
are assumed to be of a fixed degree.

Theorem 5 (1) The map P — K(P) satisfies
S(K(P), K(Fy)) — 0 when P — F,.
(2) The map P — J(P) satisfies

5(J(Fo),J(P)) = 0 when P — Fy.

Recall that we have identified the family of polynomials of degree d with C?*~!. That P
tends to Fy therefore means that the coefficients of P tend to the coefficients of Fy.

Corollary 6 Suppose K(Fy) = J(Fy) for a polynomial Fy. Then both P — K(P) and P —
J(P) are continuous at Fy.

Proof. The proof of (1) is more involved that the proof of (2) (see [D]). The proof of (2) is
easy and relies essentially on the fact that the repelling periodic points are dense in the Julia
set. We sketch the proof of (2).

Fix a polynomial F and an ¢ > 0. Choose a finite number of repelling periodic points in
J(FPy), say Xo = {z1,...,2n}, such that
N €
J(PO) C U D($]‘, 5)7
J=1
where D(z;, 5) denotes the open disk centered at x; and of radius ¢/2. We have 6(J(/%), Xo) <
€/2.

Suppose z; is p;-periodic, then
Py’ (zj) — ;= 0 and |p;| =] (Fy’)"(z;) [> 1.

It follows from the implicit function theorem that there exists a neighborhood U of F in the
parameter space and analytic functions P — (;(P) for P € U so that (;(Fy) = z; and (;(P) is
a repelling p;-periodic point. We can assume that ¢{ is chosen so small that d(z;, (;(P)) < ¢/2
forall P eU. Set X(P)={G(P),...,{n(P)}, then 6(Xo, X(P)) < ¢/2 for all P € Y. Since
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X(P) C J(P) for all P € U, it follows that 6(Xo,J(P)) < §(Xo, X (P)) and therefore that
S(J(Fo),J(P)) <eforall Pel. [

Note that the Julia set and the filled Julia set are functions which are continuous at any
quadratic Misiurewicz polynomial (i.e. a polynomial where the critical point 0 is preperiodic).

One can prove that the Julia set varies dis—continuously at any polynomial with a Siegel
cycle, and that both the Julia set and the filled Julia set vary dis—continuously at a polynomial
with a parabolic cycle (see again [D]).

7. Parameter space, the Mandelbrot set

The goal is to decompose the parameter space into regions corresponding to qualitatively
different dynamical behavior. This is in general a very hard problem. In complex dynamics
we divide the parameter space according to qualitatively different behaviors of the finitely
many critical points. This turns out to be a good strategy.

We have already seen, that the critical points play an important role in connection with
the classification theorem of periodic Fatou components. Another result connected with the
critical points is expressed in the following classical theorem, known to Fatou and Julia. Note
that this is a global result.

Theorem 7 (Fatou, Julia) The filled Julia set K(P) is connected if and only if the critical
points are contained in K(P).

The parameter space of monic, centered polynomials is decomposed into two complemen-
tary sets: the connectedness locus corresponding to polynomials with connected filled Julia
set, and the rest, corresponding to polynomials with disconnected filled Julia set.

The Mandelbrot set M is defined as the connectedness locus for the family of quadratic
polynomials ).

M={ceC| K(Q.) is connected} = {c € C | Q(0) - oo as n — oo},

see figure 5.

The first theorem about the Mandelbrot set was the following, proved by Douady and
Hubbard in 1981:

Theorem 8 (Douady, Hubbard) The Mandelbrot set is connected.

The definition of the Mandelbrot set is very rough, it is surprising that it turns out to
give the detailed decomposition of the parameter plane we are interested in. The boundary
of the Mandelbrot set is the bifurcation set, i.e. the set where the qualitative changes occur.
It follows from a theorem of Mané, Sad, Sullivan that any two polynomials Q. ,j = 1,2,
in the same connected component of C\ OM are J-equivalent. That means, there exists a
homeomorphism H : J(Q.,) = J(Q.,) conjugating the dynamics, i.e. the following diagram
is commutative

J(Q) 225 J(Q.)

J(Qc2) _Q—> J(Qc2)

€2
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Figure 5: The boundary of the Mandelbrot set.

Figure 6 shows two Julia sets that are J-equivalent. The parameters are chosen in M in
the same connected component of C\ dM.

Figure 6: J-stability.

The Mandelbrot set can also be defined within the concept of normal families. Set
Fi(c)=¢; Fulc)= (Fo_1(c))*+ cforn > 1.

For a fixed ¢ the sequence (0, Fi(c),..., F,(c),...) is just the orbit of the critical point 0
under iteration by Q.. If ¢ ¢ M then F, (¢) — oo as n — oo. If ¢ € M then |F,(c)| < 2 for all
n. It follows, that points in M are non-normal for the family F = {F},},>0, while points in
the complement are normal. The boundary of M is therefore the set of non—normality.

This alternative definition can be used to prove the following theorem about Misiurewicz
polynomials:
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Proposition 9 Misiurewicz polynomials are dense in the boundary of the Mandelbrot set.

Proof. Assume the statement is false. Then there exists a point ¢ in dM and a simply
connected neighborhood U of ¢ without any Misiurewicz polynomials. We may assume that
c# 1/4. Let g; : U — C, j = 1,2, denote the two branches of the square-root of (1/4 — ¢).
Then hj(c) = 1/2 + g;(¢),j = 1,2, determine the two fixed points of ().. They differ since
c # 1/4. 1t follows that the family F = {F), | }.>0 satisfies Montel’s normality criterion with
respect to the two analytic functions h;, j =1, 2. This contradicts that ¢ in M and therefore
a non-normal point. ]

Observe, that we have proved more than stated: the set of Misiurewicz points for which
0 is eventually mapped onto a fixed point is dense in the boundary. The same kind of proof
would give that Misiurewicz points for which 0 is eventually mapped onto a periodic orbit of
period p is dense in the boundary for any fixed p.

Universality of the Mandelbrot set is discussed in Nuria Fagella’s paper. Properties of
Misiurewicz polynomials are discussed further in Tan Lei’s paper.
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1. Introduction

In the field of complex dynamics and, in particular, iteration of functions of one complex
variable, the topic that has by far been object of the most attention is the iteration of the
family of quadratic polynomials Q. := 2%+ ¢. In this paper we aim to answer the question of
why this very particular family of polynomials is important for the understanding of iteration
of general complex functions.

This is the second paper in the “Complex Dynamics” series of EWM 95. We assume that
the reader is familiar with the basic definitions and theorems concerning the dynamics of
quadratic polynomials which are the topic of the first article [Br3]. For other surveys we refer
also [BI1, Brl] and [Mi].

As a first observation we may say that often, a good place to start is the simplest example,
in this case the group of Mobius transformations which are already very well understood.
The next simplest class of functions is the class of polynomials of degree two and even
that early along the way, we already bump into complicated dynamics which have occupied
mathematicians in this field for over twenty years, and still do.

But the real answer to the question has basically one name and that is the theory of
polynomial-like mappings of A. Douady and J. Hubbard. This theory explains how the
understanding of polynomials is not only interesting per sé€ , but helps understand a much
wider class of functions namely those that locally behave as polynomials do.

Most of the definitions and results in this paper may be found in the work of Douady
and Hubbard “On the Dynamics of Polynomial-like Mappings” [DH3]. Our goal is to state
their most important results as well as to give several examples that illustrate them. These
examples serve also as initial motivation: example B concerns families of cubic polynomials
whose dynamical planes exhibit homeomorphic copies of quadratic filled Julia sets (see Figs. 5
and 6), while their parameter spaces contain homeomorphic copies of the Mandelbrot set (see
Fig. 12); example C deals with the family of entire transcendental functions f\(z) = Acos(z)
for which the same phenomena occur (see Figs. 7 and 13); finally, example D shows how
we find copies of the Mandelbrot set in the Mandelbrot set itself (see Figs. 8, 9 and 14).
Examples of the same phenomena for Newton’s method may be found in [BC, CGS, DH3, T]
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and in [F] for the family z — Aze”.

This work is divided in two parts, the first one concerning the dynamical planes and
the second one the parameter spaces. Section 2 contains the definition of a polynomial-like
map and sets up the examples that we follow throughout the paper. In Section 2 we state
the straightening theorem (Theorem 2) which explains how polynomial-like maps and actual
polynomials are related. Along the way, we give a small survey of the different types of
conjugacies that may occur. Section 2 contains the parameter-plane version of the straight-
ening theorem, explaining why we find homeomorphic copies of the Mandelbrot set in the
parameter planes of other families of functions.

Figure 12 was borrowed from [Br2] by courtesy of Bodil Branner. All other computer
illustrations in this paper were created with the program [t by Christian Mannes, whom I
thank for his assistance and patience.

2. Dynamical Plane

2.1. The Definition of a Polynomial-like Map

Definition A polynomial-like map of degree d > 2 is a triple (f, U’, U) where U and U’ are
open sets of C isomorphic to discs with U/ C U and f : U’ — U is a holomorphic map such
that every point in U has exactly d preimages in U’ when counted with multiplicity.

Figure 1: The three elements (f,U’,U) that form a polynomial-like map.

For the examples throughout the paper the following definition will be necessary.

Definition Let P(z) be a polynomial of degree d > 2 and let ¢(z) be the Bétcher coordinates
at infinity (see [Br3]). It is a fact that if all critical points of P belong to the filled Julia set
K (P) then ¢ can be extended to map the complement of K(P) to the complement of the
unit disk. We define an equipotential curve of potential n to be the preimage under ¢ of a
circle of radius €”. It follows then that an equipotential curve of potential 7 is mapped under
P to an equipotential curve of potential dn with degree d.

Example A The obvious example is an actual polynomial of degree d, restricted to a large
enough open set. Let P be a polynomial of degree d > 2 and let I'' be an equipotential curve
of P of some given potential n such that it is a single simple curve. Then, I' := P(I") is an
equipotential curve of potential drn. If we let U/ and U be the open sets enclosed by I and
I' respectively then, the triple (P|y/, U’,U) is a polynomial like map (see fig. 2). Note that
we do not necessarily have to choose the open sets as regions enclosed by equipotentials. In
fact, if we let V' be any large enough disk then V := P~1(V’) is an open set contained in V/
and (Ply+, V', V) is another polynomial-like map.
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Figure 2: The restriction of two polynomials of degree two as polynomial-like maps. Left: @_1(z) =
2% — 1 with connected Julia set. Right: Q.(z) where ¢ = —0.8 + 0.44, with totally disconnected Julia
set.

Example B In this example we want to consider some polynomials of degree three which
restricted to an open set form a polynomial-like map of degree two. Let P be a cubic
polynomial with one critical point w; escaping to infinity under iteration and the other
one, wq,remaining bounded. Let I' be the equipotential curve that has the critical value
vy := P(w1) as one of its points and let U be the open set bounded by I'. Then, the preimage
of I' under P is a figure eight curve, since all points on I' have three preimages with the
exception of the critical value vy that has only two preimages (see fig. 3). This figure eight
bounds two connected components. Let U’ be the open connected component that contains
the critical point wy with a bounded orbit. Then, U’ maps to U with degree two, i.e., every
point in U has exactly two preimages in U’. The triple (P|y+, U’,U) is a polynomial-like map
of degree two. (Notice that if we choose sets U’ and U as we did in example A, we would
obtain a polynomial-like map of degree three.) We have chosen a polynomial of degree three
for the sake of the example but it is clear that similar situations would occur with polynomials
of any degree, with critical points escaping and not escaping to infinity.

Figure 3: The restriction of a cubic polynomial to create a polynomial-like map of degree two.
Example C Let f(z) = mcos(z) and let U’ be the open simply connected domain
U ={2¢eC||Im(z)] < 1.7,| — # — Re(z)| < 2},

and set U = f(U’). One can check that U’ C U, as shown in Fig. 4. Since U’ contains only
one critical point w = —7, it follows that f maps U’ to U with degree two. Hence the triple
(flo, U, U) is a polynomial-like of degree two.
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Example D Sometimes a polynomial-like map is created as some iterate of a function
restricted to a domain. For example, let Q.(z) = 2% + ¢ and let ¢ = —1.75778 + 0.0137961:.
Set

U'={z€ C||Im(2)| < 0.2, |Re(2)| < 0.2}.

One can check that the polynomial Qi’o maps U’ onto a larger set U with degree 2, as shown
in Fig. 4. The triple (Qfo |, U, U) is a polynomial-like map of degree two.

Figure 4: The restriction of f(z) = mcos(z) (left) and Q2 (z) (right) to create polynomial-like maps
of degree two.

This is an example of what is called renormalization. We say that a quadratic polynomial
is renormalizable if there exist open disks U’ and U and an integer n such that (f"|¢, U', U)
is polynomial like of degree two. Renormalization is a very important topic in the field of
complex dynamics. (See [Mc]).

2.2. The Filled Julia Set

The filled Julia set and the Julia set are defined for polynomial-like maps in the same fashion
as for polynomials, keeping in mind that a polynomial-like map is defined only in an open
subset of C.

Definition Let f: U’ — U be a polynomial-like map. The filled Julia set of f is defined
as the set of points in U’ that never leave U’ under iteration, i.e.,

Ky:={z€U"| f*(z) € U forall n > 0}.

An equivalent definition is
K= () /1),
n>0
and from this expression it is clear that Ky is a compact set.

As for polynomials, we define the Julia set of f as
Jf = 8Kf.

Notice that if the map f is the restriction of some polynomial F to a set U’ then, in
general, Ky ; Kr. As an example consider example B above where F' is a polynomial of
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degree three and f its restriction to the set U’ in Fig. 3. Notice that U’ maps to U with degree
two. The other connected component of F’~1(U) which we denote by V, maps to U with
degree one. Hence, there are points in U’ that map to V and come back to U’ afterwards,
never leaving the set U. Such points do not belong to K since they are not in U’ at all times
but they belong to K since they do not escape to infinity under iteration. Hence K ; Kr
and moreover, a connected component C' of K is either a connected component of K or it
is disjoint from Ky, since I’ maps connected components of K to connected components.
Therefore Kr might have more connected components than Ky but not larger ones.

2.3. The Relation with Polynomials

The Straightenning Theorem stated in this section shows that the relation between polynomial-
like maps and actual polynomials is actually very strong. In order to state it, we need to
review the different types of equivalences between holomorphic maps.

Equivalences or conjugacies of maps

Suppose f : U — U and ¢ : V! — V are two polynomials-like maps of degree d. The
weakest, but very important equivalence between f and ¢ is what we call topological equiva-
lence or topological conjugacy and denote by ~,,.

Definition We say that f ~,,, ¢ if there exists ¢ a homeomorphism from a neighborhood
N(Ky) of Ky to a neighborhood N (k) of K, such that the following diagram

N'(K;) —L— N(K))

¢| |¢
N'(Kg) —— N(K,)
commutes, where N'(K;) C N(Ky) and N'(K,) C N(K,).

If two functions are topologically conjugate, their dynamics are qualitatively “the same”,
since the conjugacy ¢ must map orbits of f to orbits of ¢, periodic points of f to periodic
points of g, critical points of f to critical points of ¢, etc. In particular, Ky must be mapped to
K, but since ¢ is only a homeomorphism these sets could look quite different. For example,
all quadratic polynomials that belong to a given hyperbolic component of the Mandelbrot
set (except the center) are topologically equivalent. All polynomials in the complement of
the Mandelbrot set are also topologically conjugate. (In fact, these conjugacies are global
conjugacies. See remark below.)

On the other hand, the strongest type of equivalence between two holomorphic maps is
conformal equivalence, due to the rigidity of holomorphic maps.

Definition We say that f ~ . ¢ if f ~,, ¢ and the homeomorphism ¢ is conformal.

Remark 1 If we were dealing with maps defined in the whole complex plane we could
consider also global conjugacies between them. In such a case, if two maps are conformally
conjugate then they must be conjugate by an affine map ¢(z) = az + b, since holomorphic
isomoprhisms from C to itself are affine. For the quadratic family, one can easily check that
there is a unique representative in each affine class, that is, if )., and ()., are affine conju-
gate, then ¢; = ¢s.
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The concept of quasi-conformal maps appears when we want to consider conjugacies that
are stronger than topological, but weaker than conformal.

Quasi-conformal mappings For a homeomorphism, we do not have any control whatso-
ever in how angles are distorted. On the other hand, conformal maps have to preserve angles.
Intuitively, a map is quasi-conformal if we have some control on the distortion of angles even
if these are not preserved, i.e. the distortion of angles is bounded.

The precise definition is very intuitive if we assume that the map is differentiable. This
is not such a crude assumption given the fact that quasi-conformal maps are differentiable
almost everywhere. If ¢ is a diffeomorphism, the tangent map at a given point zg, takes a
certain ellipse in the tangent space at zp to a circle in the tangent space at ¢(zg). We define
the dilatation of ¢ at zy, D,(20), as the quotient of the length of the major axis over the
length of the minor axis of this ellipse.

Definition Let ¢ : U — V be a diffeomorphism and D, = supD,(z). Then, ¢ is K-quasi-
zeU
conformal if D, < K < oc.

If we do not assume the map to be differentiable, we can express its distortion in terms of
moduli of annuli.

Definition Let ¢ be a homeomorphism. Then, ¢ is K-quasi-conformal if for all annuli A
in the domain

11( mod(A) < mod((A)) < Kmod(A)

Note that a map is 1-quasi-conformal if and only if it is conformal.

For those that prefer analytic definitions one can define quasi-conformal maps as follows:

Definition Let ¢ be a homeomorphism. Then ¢ is K-quasi-conformal if locally it has
distributional derivatives in L? and the complex dilatation u(z) defined locally as

iz D.p Hdz
MELA L L
dz 0.9 £ dz

z

K-1
K+1

For more on quasi-conformal mappings see [A] and [LV].

satisfies |u| < := k < 1 almost everywhere.

Quasi-conformal conjugacies and hybrid equivalences We define a quasi-conformal
conjugacy (f ~4. g) by requiring the homeomorphism ¢ in the topological conjugacy to be
K-quasi-conformal for some K > 1. We say that f and ¢ are hybrid equivalent (f ~y, g) if
they are quasi-conformally conjugate and the conjugacy ¢ can be chosen so that d,¢ = 0
almost everywhere on K. If J; has measure zero, this simply means that ¢ is holomorphic
in the interior of K. Clearly

chonfg:>hobg:>quCg:>thopg‘
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The Straightening Theorem

The relation between polynomial-like mappings and actual polynomials is explained in the
following theorem, whose proof can be found in [DH3].

Theorem 2 Let f : U — U be a polynomial-like map of degree d. Then, [ is hybrid
equivalent to a polynomial P of degree d. Moreover, if Ky is connected, then P is unique up
to (global) conjugation by an affine map.

This theorem explains why one finds copies of Julia sets of polynomials in the dynamical
planes of all kinds of functions. Notice that if f is polynomial-like of degree two and K
is connected then f is hybrid equivalent to a polynomial of the form Q.(z) = 2% + ¢ for a
unique value of ¢ by remark 2. This may also be true for other families of polynomial-like
maps of degree larger than two, as long as the resulting class of polynomials has a unique
representative in each affine class. (As examples, consider the families Az(1+z/d)?, A € C\{0}
for any d > 2).

Example B.1 In the setting of example B in Sect.2, we consider the polynomial P,(z) =
2% — 3a%2 — 2a® — a. One can check that for all values of a, the critical point wy = —a is
a fixed point. If we take, for example, ¢« = —0.6 then the critical point w; = a escapes to
infinity. By the Straightening Theorem, P_g¢(z) restricted to the open set U’ as defined in
example B, is hybrid equivalent to a quadratic polynomial and hence, to a polynomial of the
form Q.(z) = 2% + c. In this case, we know that the parameter ¢ must be 0, since Qg(z) is
the only quadratic polynomial of this form with the critical point being fixed. In Fig. 5, we
show the dynamical plane of (g and that of P_gg.

Figure 5: Left: the filled Julia set of Qo(2) = 2% in white. Right: the filled Julia set for P_q¢(2)
in white. Note that only the largest component in U’ corresponds to the filled Julia set of the
polynomial-like map of degree 2.

Example B.2 Again in the setting of example B in sect. 2, we consider the polynomial
Ro(z) = 2% — 3a%z + (1/2)(V9a? — 4 4+ a — 4a®). One can check that for all values of a, the
critical point ¢ = —a is a point of period 2. In this case we take a = —0.75 and then, the
critical point ¢; = a escapes to infinity. By the straightening theorem, R_g 75(z) restricted
to the open set U’ as above, is hybrid equivalent to a quadratic polynomial and hence, to a
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polynomial of the form @Q.(z) = z? + ¢. In this case, we know that the parameter ¢ must be
—1, since Q_1(z) is the only quadratic polynomial of this form with the critical point being
of period two. In Fig. 6, we show the dynamical plane of R_g 75, to be compared with that
of )_1 in Fig. 2.

Figure 6: The filled Julia set for R_g 75 in white. Note that only the largest component in U’
corresponds to the filled Julia set of the polynomial-like map of degree 2. This figure 1s to be compared
with Fig. 2 left.

Example C Even though the function f(z) = mcosz is an entire transcendental function,
when restricted to the set U’ (as defined in Sect. 2) it is a polynomial-like map of degree two.
In Fig. 7, we see in white the set of points that do not escape to infinity (in the imaginary
direction) under iteration of f. The largest component inside U’ corresponds to the filled
Julia set of the polynomial-like map. Since the critical point —= is fixed under f, the filled

Julia set is homeomorphic to that of Qg(z) = 22.

Figure 7: The largest white component in U’ corresponds to the filled Julia set of f(z) = mcosz
restricted to the set U’.

Example D Consider again @, (2) = z+ ¢ where ¢g = —1.757784-0.0137961. As explained
in Sect. 2, Qi’o maps the square box U’ centered at 0 and with side length 0.4 onto a larger
set U containing U’ (see Fig. 4). By the Straightening Theorem, Qi’o is hybrid equivalent to
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Q. for some value of ¢. One can check that the critical point is periodic of period three under
iteration of Qi’o, hence there are a limited number of posibilities for ¢. In this case the filled
Julia set of the polynomial-like map is homeomorphic to the Douady rabbit (see Figs. 8, 9).

Figure 8: The filled Julia set of Q.,, where ¢g = —1.76 4+ 0.014.

Figure 9: Left: the Douady rabbit or the filled Julia set of Q.,(z) = z? — ¢1 in white, where
e1 = —0.122+0.745¢. Right: magnification of the filled Julia set of @., around the critical point. The
copy of the Douady rabbit is the filled Julia set of the polynomial-like map corresponding to Qg’u

3. Parameter Plane

As usual, the phenomena in dynamical plane are reflected in parameter space. Recall that
the parameter space of the family of quadratic polynomials Q.(z) = 2% + ¢ contains the
Mandelbrot set defined as

M = {c e C|{Q2(0)},>0 is bounded }

or, equivalently, the set of ¢ values for which the filled Julia set of Q. is connected (see
Fig. 10).
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Figure 10: The Mandelbrot set

If we look at the parameter space for other functions, we very often encounter portions that
resemble the Mandelbrot set. This fact is again explained by the theory of polynomial-like
maps. Since the Mandelbrot set appears when we consider families of quadratic polynomials,
it is reasonable to expect that it should also appear when we consider families of polynomial-
like maps of degree two, as long as these families are “nice” enough.

Remark 3 For the sake of exposition, we consider here only one parameter families of
polynomial-like mappings of degree two. For other cases see [DH3].
3.1. Analytic families of polynomial-like mappings

Definition Let A be a Riemann surface and F = {f) : U{ — U,} be a family of polynomial-
like mappings. Set

U=1{(\z2)]zcU)}
U =1{(\z)|zctl}
fA2) = (A (7))

Then, F is an analytic family of polynomial-like maps if it satisfies the following properties:

1. U and U’ are homeomorphic over A to A x D
2. The projection from the closure of U’ in U to A is proper

3. The map f:U’" — U is holomorphic and proper

If these properties are satisfied, the degree of the maps is constant and it is called the
degree of . We denote Ky = Ky, and Jy = J;,. By the Straightening Theorem, for each A
the map f) is hybrid equivalent to a polynomial of degree the degree of F . By analogy with
polynomials, we define

Mr={X € A| K, is connected }.

In the next section, we give some conditions under which the set Mz is homeomorphic to the
Mandelbrot set.
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3.2. Homeomorphic Copies of the Mandelbrot Set

Let F be an analytic family of polynomial-like maps of degree two. Then, for each A € Mg,
[ is hybrid equivalent to a unique polynomial of the form @Q.(z) = z? + ¢. Hence the map

C: M}' — M
A c=C(N)

is well defined.

Theorem 4 Let A € A be a closed set of parameters homeomorphic to a disc and containing
Mx. Let wy be the critical point of f\ and suppose that for each A\ € A\ A, the critical value
falwy) € U\ Uy. Assume also that as A goes once around 0A, the vector fy(wy) —wy turns
once around 0 (see Fig. 11). Then, the map C is a homeomorphism and it is analytic in the
interior of Mr.

Figure 11: Tllustration of theorem 4.
Remarks 5

1. The assumption “fy(wy) € Uy \ Uy if A € A\ A” is equivalent to Mr being compact.

2. If the winding number of f)(w)) —wy around 0is § > 1, then C is a branched covering
of degree §.

Example A The purpose of this example is to illustrate that the conditions of the theorem
are satisfied for the Mandelbrot set itself. Consider the parameter plane for the quadratic
family and let

A=A{c|Gule) <2npA={c|Gul(c) < n}

where Gy denotes the Green’s function of the Mandelbrot set. Given the way the Green’s
function of M is defined, if ¢ € 3A then ¢ lies on an equipotential curve of potential 7 in
the dynamical plane as well. So, for each ¢ € 9A, let T, and I'. be the equipotential curves
in the dynamical plane of Q). of potentials n and 25 respectively. The open sets enclosed by
I, and I'; are the discs U! and U, respectively and F = (Q.|vs, U, U.) the analytic family
of polynomial-like maps. Note that, by construction, for each ¢ € A\ A, the critical value
Q:(0) = clies in U.\ Ul. Also, as ¢ turns once around 0A, the critical value ¢ turns once
around the critical point 0. In this case Mr = M.
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Example B Consider the family of cubic polynomials P(z) = P, ;(2) = 2° +az+b. For any
given constants p and 6 we define the parameter space Ag = A,y to be the set of polynomials
P such that:

e one critical point wy escapes to infinity with escape rate p
e another critical point wy escapes to infinity at a slower rate or stays bounded

e the co-critical point w] of w; that is, the other preimage of P(w;) different from wy,
belongs to the external ray R(#) (see [Br3] for definitions of this terms and [Br2] for
more in this example).

Note that polynomials of this type are polynomial-like maps of degree two, as shown in
example B in Sect. 2. In [BH] Branner and Hubbard prove:

Theorem 6 The parameter space Ay is homeomorphic to a disc.

Hence, polynomials in Ay form a one-parameter family of polynomial-like maps of degree two.
Let Bg = B, ¢ be the set of polynomials in Ay for which the orbit of w; is bounded. Note

that examples B.1 and B.2 are in By for some values of p and . Also in [BH] we find the
following theorem:

Theorem 7 Let A € By and suppose that the connected component of co in K (Py) is periodic.
Then, the connected component of A in By is a homeomorphic copy of the Mandelbrot set.

Figure 12 shows the parameter space Ay with Bg in black.

Figure 12: The set By C Ap shown in black, with countably many components which are homeomor-
phic copies of the Mandelbrot set.

Example C Let fi(z) = Acos(z) and let A be an appropriately chosen disc in the A-
plane around A = 7. One can check that for appropriate choices of U{ and U, the maps
(fA|U§7 U{,Uy) form an analytic family of polynomial-like maps. As A turns once around 9A,
the critical point stays fixed at —x while the critical value —A winds once around —x hence
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Figure 13: Left: Parameter plane of fi(z) = Acosz. Right: magnification of the copy of the
Mandelbrot set centered around A = .

satisfying the conditions of theorem 4. In Fig. 13 we see the resulting copy of the Mandelbrot
set, with A\ = 7 as the center of its main cardioid.
Example D

Let A C A be a small discs of parameters centered at ¢ v« —1.755 and with ¢y contained
in A where ¢g is as in example D in Sect. 2. For Q.,, the critical point is periodic of period
three. One can check that for apropiate choices of A, U, U. and A, the conditions of the
theorem are satisfied for the family F = {Q? : Ul — U.}.ca. Figure 14 shows the Mandelbrot
set and a magnification of the homeomorphic copy that contains ¢g.

Figure 14: Copy of the Mandelbrot set in the parameter plane of Q.. Range: [—1.8,—1.72] x
[—0.038,0.038].
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Tan Lei

University of Warwick, England

tanlei@maths.warwick.ac.uk

1. Introduction

Local properties of the Mandelbrot set around a point ¢y, such as self similarity, Hausdorff
dimension, local connectivity, are closely related to properties of the filled Julia set K. for ¢
in a neighborhood of ¢q. Recall that M ={ce€ C| 0 € K.}. For each N > 0, let F denote
the holomorphic mapping ¢ — QY (0), where Q. denotes the polynomial z +— 2% + ¢. Since
K. is totally invariant, for any NV € N, we have

M={ceC| Fn(c) € K.}.

It is often convenient to go to the product space (¢, z) € C x C to study both M and K..
We may regard ¢ — K. as a map and K = {(¢,2) | c € C, z € K.} as its graph in C x C.
Then M can be interpreted as

Proj, (graph(FN) mIC) (1)

where Proj. denotes the projection mapping to the first coordinate (the ¢ coordinate).

Let ¢o be a point of M, so Fy(co) € K.. A typical way to relate K. to the local
structure of M around cq is to study the local structure of K around the point (cg, Fn(co))
(which depends on the regularity of the mapping ¢ — K. at ¢g, see for example conditions
* and *’ below), and the slope of Fiy at ¢g (i.e. the constant Fy(cg)). In this paper we
illustrate this technique by showing two related results.

The first theorem states a similarity result between the dynamical plane and the param-
eter plane around Misiurewicz points. This similarity can actually be observed in computer
experiments as in Figures 1, 2 and 3. We know that the set of such points form a dense subset
of M, and for each Misiurewicz point ¢o, we have J.,, = K., (see B. Branner’s paper).

Denote by Dpy the Hausdorff distance on the space Comp*(C) of non-empty compact
subsets of C. Let 7_. denote the translation z — z — ¢. For any closed set A C C, define

A, = (AND(0,7)) UIA(0, )

where A(z,r) denotes the open disc centered at z and with radius r. For technical reasons
it is important to include the circle dA(0,r) when measuring the Hausdorff distance of two
closed sets within the disc A(0,r).
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Figure 1: Enlargement of the Mandelbrot set around the Missurewicz point ¢y ~ —0.77568377 +
0.13646737¢ to be compared with Fig. 2.

Let p be a complex number with |p| > 1. A closed set A C C is said to be p-self-similar
about z if pr_,(A) = 7_,(A); it is said to be asymptotically p-self-similar about x if there is
a p-self-similar set L (about 0) so that the Hausdorff distance Dy ((p"7_5(A)),, L) tends to
zero as n tends to infinity for some r > 0 (hence every r > 0). For an example of a self-similar
set, see the appendix.

Theorem 1 ([T'1]): For every Misiurewicz point cq, there are two constants p € C,|p| > 1
and pp € C— {0}, and a closed p-self-similar set L C C such that for any r > 0

a) Du((p"7—co (Ke))ry Lr) = 0 as n — o0, i.e. K., is asymptotically p-self-similar about cq.
Moreover, for ¢ in a neighborhood of co, we have Dy ((p(c)"T_¢(e)(Ke))r, L(c)) — 0,
where ¢ — p(c) and ¢ — ((c) are holomorphic, and ¢ — L(c) is a map verifying the
condition * below.

b) D((p"1—ce (M), (¢L);) — 0, i.e. M is also asymptotically p-self-similar about cq.

c) L AT Dy((tp -7y (Key))r (tT—eo (M)),) = 0. Hence up to multiplication by p the
sets K., and M are asymptotically similar about cg.

(We will give the precise form of p, L and p later in the formulas (2), (6) ).

Part ¢) is an easy consequence of a) and b). As an application of this result, one can show
that M is locally connected at each Misiurewicz point (see the appendix).
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Figure 2: The Julia set of the Missurewicz polynomial z — 22 + ¢g, where ¢ is as in Fig. 1.

Figure 3: Enlargment of Fig. 2 around the point ¢p.
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The second result can be considered as a quantitative study of the similarity between Julia
sets and the Mandelbrot set. It gives estimates for the Hausdorff dimension of these sets.
The exact definition of the Hausdorff dimension is not so important for the purpose of this
paper. It can be found in the appendix. We only state two basic properties of it: For any
compact set K of C, we have H-dim(K) € [0,2], and for any compact subset K’ C K, we
have H-dim(K’) < H-dim(/K). One should consider that the Hausdorff dimension measures
a kind of density or complexity of a set. So if K C Cis a compact set without interior, but
with H-dim(K) = 2, then K must be very complicated.

Theorem 2 (Shishikura): For each ¢ > 0, there is a dense subset of OM satisfying that for
every point ¢ in this set, there is a closed set X C 0K., and a constant ro > 0 such that

a’) H-dim(0K,) > H-dim(X) > 2 —e. Moreover for ¢ € A(cg,10), we have similarly
H-dim (X (¢)) > 2 — e, where X(c) is a subset of 0K., and ¢ — X(c) verifies the
condition *’ below.

b’) H-dim(OM N A(cg,19)) >2—¢ .

Corollary. We have H-dim(0M) = 2.

The existence of ¢g and X satisfying a’) involves deep analysis of parabolic perturbations
and renormalizations. We will give some ideas of it in the appendix. The set X is in fact
a hyperbolic set (see the appendix). It is this hyperbolicity that guarantees the stability
property.

We will sketch the proofs of a),b),b’) in the following sections.

Condition *. Consider a mapping ¢ — A(c) with ¢ € A(eg, o), A(c) a closed subset of C,
such that ¢ — A(c), is continuous at cq, for every r > 0. The mapping admits a dense set
of continuous sections at cg, if there exists a dense subset Z C A(cg) and, for each z € 7 | a
neighborhood U, C A(cg, o) of cg, and a mapping

s {(e,2) | z€Z, celU.} = C

such that s(co, ) =id and s(-, z) : U, — C is continuous with s(c, z) € A(c).

Condition *’. Consider a mapping ¢ — X(c), with ¢ € A(cg, ro), X(c) a subset of C. The
mapping admits a holomorphic motion if there is a mapping ¢ : A(cg,r9) X X — C, where
X = X(cg), such that i(co,-) = id, i(c,-) : X — C is injective with i(c, X) = X(c) and
i(+, 2) : A(eg, m0) — C is holomorphic for each z € X.

2. Dynamical planes, Proof of a)

First remark that asymptotic similarity is invariant under conformal transformations. More
precisely:

Proposition 3 : Let U and V' be neighborhoods of 0 and uw : U — V' be an injective analytic
map satisfying w(0) = 0 and u'(0) # 0. Suppose A is a closed subset of U containing 0, and
suppose u(A) is asymptotically p-self-similar for some p € C with |p| > 1, i.e. for anyr >0,

Du((p"u(A)),, L) =0 as n— oo
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where L is a closed p-self-similar set. Then A is asymptotically p-self-similar to (1/u'(0))L,

i.e. for any r > 0,
1
Dy ((PnA)m (WL) ) — 0.

Now assume that c¢g is a Misiurewicz point. If there is no ambiguity, we simplify the
notation by setting )., = ¢ and K., = K. By definition, there is a smallest number k£ such
that a = Q% (cp) is a periodic point. Let p = (Q7)/(a) denote the multiplier.

It follows from classical results of Fatou and Julia that the point « is repelling, i.e. |p| > 1.
Let ¢ : U — A(0, r) denote linearizing coordinates in a neighborhood U of «, hence satisfying
o(a) =0, ¢'(@) =1 and po QP o p~1(2) = pz for all = € A(0,r/|pl|), for some r > 0.

Since K is totally invariant (Q(K) = @ '(K) = K) and ¢ is a linearizing coordinate we
have

(pp(KNU)) = (p(KNU)), .
Applying proposition 3 to (u, A) = (p, K N U) we get

Dit((p" 7 () s (9 (K N T))pr) = 0

for any 0 < r’ < r.

Since (Q*)(co) # 0, there exists a neighborhood V of ¢y and r” > 0 such that ¢ o Q% :
V — A(0,7") is a homeomorphism. Applying proposition 3 to (u, A) = (o Q%, K NV) we
obtain .
D e (K s | ————(K N U — 0.
o (0ot (Grretkn ) )
This proves the first assertion of a). Note that p is the multiplier of the periodic point v and
that the p-self-similar limit set L is determined (locally) by

m@ 0 QH(K NT) (2)

where V' is any neighborhood of ¢y which is mapped homeomorphically onto its image under
poQ".

Example. Let us take the example of ¢g = ¢ . For ; : z +— 22 + ¢ , the orbit of ¢ is :
i+ i—1r —i+ i—1. In our notation, k = 1,p=2,a=i—1and p = (Q¥)'(1 — 1) =
4(1 4 1) = 4274,

Remark. Note that a) could have been stated in greater generality. The statement is true for
any repelling periodic point o with multiplier p and linearizing coordinates ¢, and similarly
for any pre-periodic repelling point. We have only chosen the special pre-periodic point ¢q

in order to be able to compare with the parameter plane. These are the only properties we
have used, together with the invariance of K.

The second assertion of a) is a consequence of a stability result. As before let ¢g be a
Misiurewicz point and let k, p, a, p be as above for the map @, .

As an application of the implicit function theorem, (pre-)repelling periodic points are
“stable” with respect to the parameter. That is for any ¢ in a neighborhood W of ¢g, the
polynomial Q. : z — z? + ¢ has a p-periodic point a(c), depending analytically on ¢, with
multiplier p(c), and with a k-th pre-image ((c) of a(c), both depending analytically on e,
satisfying

((co) = o, aleo) = a, p(co) =p and (QF)'(C(e)) #0.
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Let ¢. denote the linearization coordinate around a(c). The same proof as above shows
that there is a neighborhood V¢ () of ¢(c) which is mapped by ¢, o0 Q¥ comformally onto its
image, and that K. is asymptotically p(c)-self-similar about {(c) to the limit set (locally)

.
(QE)' () |o=c()

As for the condition *: the mapping ¢ — L(c) is continuous at ¢o because ¢ — K. is
continuous at ¢y (Douady-Hubbard, see B. Branner’s paper); each repelling periodic point

L(c) = Pc O QIS(I(C n VC(C)) . (3)

has a continuous section, and the set of repelling points is dense in J,, = K.

3. Parameter plane, Proofs of b),b’)
The proof of b) is done in two steps, one consists of a general result, one is the adaptation.

Proposition 4 Suppose A is a neighborhood of A\g in C. Assume we have a mapping A —
A(X) satisfying the condition * at \g, and that A(X) is p(X)-self-similar about 0, where X —
p(A) is holomorphic with |p(Ao)| > 1. Assume u : A — C is a holomorphic mapping, with
w(Ao) =0, and u'(Ao) # 0 (transversality). Set

M, ={X € Alu(X) € AN} (4)

Then M, is asymptotically p(Ao)-self-similar about Mg to the p(Ao)- self-similar set A(Xo)/u'(Mo).

Proof. (sketch) Assume Ag = 0. For z € C a point and K C C a compact set, we use d(z, K)
to denote the euclidean distance from z to K, i.e. d(z, K) = mincx |z — 2.

To fix our ideas we treat first two simple cases. Assume that A — A()) is a constant map
(i.e. A(N) = A(Xo)) and u(z) = v/(0)z is linear. Then obviously M, is pg-self-similar about
0, to the set A(0)/%/(0). Assume now that A — A(X) is still constant but u(z) is no longer
linear. Then M, coincides with w~*(A(0)) and the conclusion holds by Proposition 3.

Now let us come back to the setting of our proposition. Set p(0) = p, v/(0) = v’ and
A(0) = A. Choose r > 0 sufficiently small. We must prove that Dg((p"u'M,y),, A;) — 0
as n — oo. Recall that by definition Dy (A, B) = max(§(A, B),§(B, A)) (see B. Branner’s

paper).
First we prove 6((p"u'M,),, A.) — 0. Let

A€ M, NA0, —)

pru/
so that p"u/A € A(0,r) and |A] ~ |p| ™.
AN A) < [0"X = g u(N] + 1) — p) ()] + dlp ()" u(N), A) = Iy + T + T

We have I1 ~ [p|*"|A]* ~ |p|"|p|~*" — 0, and

n—1
L= |p" = pN)" - [ < D1l e e = pN)] - [u(V)] ~ nlp[" AP = 0.
=0

I3 — 0 because A € M, so p(A)"u(X) € A(X) and |[p(X)"u(A)| ~ |p"u'A| < r, moreover
S(A(A)r, Ay) = 0as A — 0.
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To prove 6(A,, (p"u'M,),) — 0, we only need to show d(z, (p"u'M,),) — 0 for each z € Z,
where 7 is the dense set in A, where we have continuous sections s(-, z) (see condition *).

Let z € Z. By Rouché’s theorem, for n large, there is a A,, € U, as a solution of the equation
s(A,z) = p(A)"u(A). Hence A, € M, and |A,| < Clu(A,)| ~ |p|~". Moreover

[p(An) u(An)| = |$(An, 2)[ ~ [5(0,2)[ = [2] < 7
So d(z, (p"u'M,),) < |z—=p"u'Asl < |2 =s(An, 2)|+ [p(An)"u(A) = p '\, = L+ 15 .
We have I5 — 0 as above, and I4 — 0 by the continuity of s(-, z), and the fact s(0,z) = z. ®
Remark. This proposition is also true in a higher dimensional setting, and under a weaker

hypothesis of differentiability for p and u. See [T1] for details.

Let ¢g be a Misiurewicz point. We now will adapt the situation just considered. Recall
from the proof of the second part of a) that there exist a neighborhood W of ¢ and a
holomorphic mapping ((c) such that K. is asymptotically p(c)-self-similar about the point
¢(c), to the p(c)-self-similar limit set L(c) (see (3) ). Shrinking W if necessary we have
¢ € Vi(c) whenever ¢ € W. Hence the Mandelbrot set in the region W can be interpreted as

1
w| ————
€< ‘ QN ()=o)

To apply the above proposition, set A = W, Ag = ¢g, A(c) = L(c) and

1
) = e

We have proved in part a) that ¢ — L(c) satisfies the condition * at ¢o, and L(c) is p(c)-
self-similar about 0. Moreover ¢ — p(c) is holomorphic, with |p(co)| > 1. It is clear that
u(c) is also holomorphic. As a consequence of the connectedness of M, Douady and Hubbard
showed that u'(cg) # 0. Set L(co) = L. Now since M N W = M,,, Proposition 4 shows that,
for any r > 0,

MﬂW:{c€W|CEKC}:{ c,ocon(c)EL(c)}. (5)

Pe © le(c) .

Du ((p”T_COM),,, (ﬁL)r) 0.

Moreover, an elementary calculation (see [T1] for details) shows that the required p is

1 (QF) (2) 2=,
- : . (6)
UI(CO) d d
%(Qf(cmc:co - %(Q(Cmc:co

This ends the proof of b).

Example. Let us take again the example of ¢g =7 . To find the value of p , we first obtain
Q%) (2)]s=e0 = (1) (2)]2=mi = 21,
d k

%(Qc(c)”c:i = %(e2 + ) |emi = ¢+ D]emi =20+ 1.

The function «(c) is the solution near ¢ — 1 of the implicit equation Q2(z) = z, i.e. (2% +
0)2 4+ c¢—2z=0 for ¢ close to 7 . Hence

d 20— 1)2+4) +1 2 — 1 21
== S S T 1

dc 20— 1)244)-2¢t—-1) -1 4i+3
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Computer experiments confirm the similarity very impressively.
The proof of b’) is also done in two steps:

Proposition 5 Assume that we have a holomorphic motion i : Ax X — C (where A denotes
the unit disc) and an analytic mapping v : A — C, with v(0) = 29 € X, v(A) Z i(), 20) (weak
transversality). Set M, = {X € A | v(A) € X(A)}. Then

H-dim (M,) > lin% H-dim (X N A(zg,7)) .
r—

Proof. (sketch) For simplicity, we assume v’(0) # 0. In the simple case that X(X) = X (0)
for A € A we have M, = v='(X(0)). Since v is bi-Lipschitz near 0, and hence preserves
the Hausdorff dimension, we have H-dim (M) > H-dim (X N A(zg, r)) for some r > 0. As a
consequence H-dim(M,) > lim,_,o H-dim (X N A(zg, 7)) .

Now let us come back to the setting of our proposition. We will apply Rouché’s theorem
to prove that, for r €]0, ro[ (where rq is a small constant) and Y = v™1(X N A(zo, 7)), there
is R, > 1 (with R, — oo as r — 0) and a holomorphic motion: j" : {|u| < R,} x Y" = C
such that j7(1,Y") C M,. Therefore

H-dim (M,) > H-dim (5" (1, Y")) > C(1/R,)H-dim(Y") = C(1/R,)H-dim(X 0 A(zo, 7))

where the existence of C'(1/R,) in the second inequality is due to a non trivial property of
holomorphic motions (see below). Furthermore C'(1/R,) — 1 as r — 0.

(More precisely by Slodkowski’s theorem (see for example [D1]), the mapping j"(1,-)
extends to a K (1/R,)-quasi-conformal mapping and K(1/R,) — 1 as 1/R, — 0. On the
other hand, by Mori’s inequality K-quasi-conformal maps are 1/K-bi-Holder continuous.
Furthermore a simple calculation shows that for any 1/K-bi-Hélder continuous map j and
any set Y, we have

(1/K) - H-dim (Y) < H-dim(j(Y)) < K - H-dim(Y) .

Setting C'(1/R,) = 1/K(1/R,), we get the desired inequality).

To define the constant R, and the holomorphic motion j”, we proceed as follows: As-
sume zop = 0 and i(A,0) = 0. Since the family of holomorphic maps {i(:, z) },ex is nor-
mal, and i(\,z) # 0 for any z # 0 and any A (by injectivity), any limit function of
the family corresponding to a sequence z, — 0 must be the constant function 0. Fix
s < 1 and @ > 0 such that in A(0,s), v(}A) is injective and a|A| < |v(A)]. Then for
b, = sup{|i(X, 2)] | z € XNA(0,r), |\ <s}, we have b, — 0 as r — 0.

Fix rg such that as > b, for 0 < r < rg . Take r €]0, ro[, set R, = as/b,. Take p € A(0, R,)
and z € X NA(0,r). The equation v(A) — ¢,,(2) = 0 has a unique solution A(r, p, 2) in the
disc A(0, min{s, s/|u|}) (we just apply Rouché’s theorem here).

Now set Y" = v~}(X N A(0,7)) and define j7 : {|u| < R} x Y" — C by j"(u,y) =
A(r, i, v(y)). It is then easy to check that j is a holomorphic motion and 57(1,Y") C M,. &

Now we should adapt the above result to the situation of the boundary dM of the Man-
delbrot set. It is much less trivial than the similarity case because we want M, to be a subset

of OM.
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Lemma 6 For the holomorphic motion in part a’), there are zo € X, ¢ € A" C A, with A’
a neighborhood of ¢/, and v(c) = QN (0) for some N > 0 with v(c') = iu(20), v(c) Z i.(20)
such that {c € A’ | v(c) € X(c)} C IM NA', and lim,_o H-dim (X N A(iw(20),7)) > 2 — €.

Proof. (sketch). By compactness of X, there exists a point zp € X such that H-dim(X) =
lim, o H-dim(X N A(0,7)) > 2 —e. Let 7 : A(cg,79) X X — C be the holomorphic motion
given in part a’). Since for ¢ close to ¢g the mapping i(c,-) does not change too much the
Hausdorff dimension (see the proof of the above proposition), there is a small neighborhood
A" C A(cg, ro) of ¢g such that lim, o H-dim (X (¢) N A(i(c, z0), 7)) > 2 — ¢ for ¢ € A".

Recall that F), denotes the map ¢ — QZ(0). The boundary of M coincides with the set

{ceC| thefamily F = {F,, n € N } is not normal at ¢ }

(see B. Branner’s paper). By part a’), ¢g € dM. We claim that there is ¢/ € A’ an integer
N > 0, such that Fn(c¢') = i(c/,2). For otherwise the family F would satisfy Montel’s
normality criterion at ¢y with respect to the two analytic functions ¢ — i(c, z9) and one
branch of ¢ — Q71 (i(c, z0)), which contradicts the fact that F is not normal at .

Set v(c) = Fn(c). In order to apply the above proposition, we need to know that v(c) #
i(c, z0) and the set M, = {c € A’ | v(c) € X(¢)} is a subset of M.

One thing that was not explicitly stated in part a’) is that, besides the other properties
in a’), we have also Q., (X) = X, moreover the mapping i(c, -) conjugates the dynamics, i.e.

i(e, Qe (2)) = Qelife, 2)) - (7)

As a consequence Q.(X (¢)) = X(¢) and X (¢) C J..

There are (at least) two ways to see that v(c) #Z i(c, z0): 1. Since ¢g € M, there is
"€ A= M. So Fy(c") = QN(0) & Jon. But i(c”,20) € X(c") C Jen. 1I. We may also use
the normality argument. Assume Fiv(c) = i(c, z9) in A’. Then, for any integer k > 0,

Fivii(€) = QE(Fiv(e) = QE(ile, 20)) = i(e, Qi (20))

where the last equality is due to the formula (7). So the family F is uniformly bounded in
A’, hence normal. This contradicts the fact that F is not normal at cq.

To prove M, C M we need Mané-Sad-Sullivan’s characterization of dM: We say that
Q. is J-stable at ¢, if there is a continuous map h : A(ey,r) X J., — C such that h, = h(e, )
is a conjugacy from (J.,,Qc,) to (Je, Qc) and k., = Id. Then

OM ={c; € C| Q. is NOT J-stable at ¢; } .

(This formula can be used to get another way to prove v(c) # i(c, zp), for otherwise one
can pull back the formula (7) to get a holomorphic motion of |J, @ (v(co)). Since this is
a dense subset of J,,, we can apply the A-lemma of Mané-Sad-Sullivan to show that Q). is
J-stable at ¢g, thus a contradiction.)

Now assume that ¢; is a point in M, —dM. So Q). is J-stable at ¢y, and admits a conjugacy
map h : A(eg,r) x J,, — C. Decreasing r if necessary, we may assume A(cy,r) C A’ Set
X1 = i(c1, X). We claim that A[a(c, )xx, must coincide with the holomorphic motion i.
The reason is that both maps are continuous and h(c, z) = i(c, z) for z any repelling periodic
point, and repelling periodic points are dense in X (this is because X is a hyperbolic subset).
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On the other hand, h must preserve the critical point, i.e. h(c,0) = 0. So h(c,v(c1)) = v(c).
This gives rise to a contradiction since v(ey) = i(cq, z0) but v(e) Z i(c, z0).
Hence all the conditions required by the above proposition are satisfied. So

H-dim(9M) > H-dim(M,) > lim H-dim (X () N A(i(¢, 20),7)) > 2 — < .

r—0

This completes the proof of b’). ]

4. Appendix

1. An example of a self-similar set. Let A C [0, 1] denote the standard middle third Cantor
set. Take all logarithmic spirals through points in A which in logarithmic coordinates are
straight lines parallel to the vector log3 4 27i. This set is p-self-similar for p = 3%e®™ for
any t € Ry.

2. Local connectivity. For ¢y a Misiurewicz point, [T2] constructed a sequence of Jordan
curves [',, in the dynamical plane such that A = {¢o}UlJ, I's is asymptotically p-self-similar
and the set of bounded components U, of C — I, forms a basis of nested neighborhoods of
co with U, N K, connected. Moreover there is a holomorphic motion 7 : A(cg,r9) X A — C
with A(c) asymptotically p(c)-self-similar. As n — oo, the sequence of subsets PI';, = {c €
Alco,r9) | ¢ € I'y(¢)} bounds a nested sequence of neighborhoods W,, of ¢g in the parameter
plane, with W, N M connected. Applying Proposition 4 to PI',, we see that it is also
asymptotically p-self-similar. In particular the diameters of W,, shrink to zero exponentially
fast. This is a stronger statement than saying that M is locally connected at ¢g.

3. Hausdorff dimension: Let (£, d) be a metric space. For A C F, denote by | 4| its diameter.
For X C F,t > 0,ec >0, we define

mi(X)=inf $ > A" |0< A <e, X C (4
4} ] ,
jeN ieN

Fixing ¢, m$(X) increases as € decreases. We can then define my(X) = lim.,omi(X) =
sup.~gmi(X). Note that m;(X) can be co. An easy calculation shows that if for some ¢,
my(X) < oo, then mp(X) = 0 for any T > t. As a consequence, there is a unique number
d € [0,00] such that m;(X) = oo for ¢t < § and m(X) = 0 for ¢ > §. This § is called the

Hausdorff dimension of X.

It is not easy to calculate the Hausdorff dimension in general. However, in the following
situation there is an easy lower bound: Let G : V' — U be an analytic covering, with U an
open disc, V a finite union of open discs with disjoint closures and V' C U. Then for the
non-escaping set X ={z €V | G™(z) € V for all m > 0}, one has:

log(number of components of V)

H-dim (X) > log(max |G'(z)|)

The set X is a special example of hyperbolic sets and is automatically stable under pertur-
bation.

4. Proof of theorem 1.2.a’). As an example, we give the main steps to show that there are
¢, = ¢ = 1/4, ¢, € OM and hyperbolic subsets X,, C dK,, such that H-dim(X,) — 2 as
n — oo. The technique is called geometric limits of a parabolic map, and parabolic implosion.
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A similar study can be done for each ¢ in a dense subset of M (namely the set of roots of
primitive hyperbolic components).

Denote by f the map z +— 22+ 1/4. There will be two holomorphic functions g and & (the
first and a second geometric limit of f) generating the family of maps

L={f¢'n™ | k,l,meZ, m>0}

(with a certain convention on f~! and ¢g~!) satisfying the following two properties:

4.1. There exists a sequence ¢, — 1/4 (with ¢,, € M, but one can also choose ¢, in the
main cardioid or ¢, € C — M) such that for each G; € L, there are integers j(n,7) — +oo
such that szln’i) converges to (; uniformly on compact sets in the domain of definition of
G

4.2. There exists a small neighborhood U of 1/2 and constants a,C,C’ > 0 such that for
large 1 > 0, there are open sets Uy, -+, Uy, with N > an?, U;NU; =0, U; CU,and G; € L
such that Gz, : U; — U is bijective and Cy(logn)? < |Gz | < C'n(logn)?.

As a consequnce, for n large, ¢ = 1,---, N, there is j(n,?) large and U(n, i) close to U;
such that szln’i) maps U(n, ) bijectively onto U with derivative close that of G;. For X (n)
the non-escaping set, the formula in Appendix 3 gives us:

2logn + loga

H-dim (X >
im (X (n)) log n + 2loglog n + constant

>2—c.

We will skip the proof of 4.1 (which can be found in the papers of Shishikura and in [D2])
and give a sketch of the construction of g, h, U;, U, G; and the estimate of |G].

a) Denote by B the basin of the parabolic point 1/2 for f. By classical results there
are holomorphic surjective maps ¢ : C — C, w — z and ®; : B —» C, z — w such that
fowr = ¢10T and ¢ 0 f = T o &y, where T" denotes the translation w — w 4+ 1 (the
mappings ¢1, Py are called Fatou coordinate changes of f). Set g = g1 = g1 0P : B = C;
g1 = P09 7 'B = Cand g, = mogion~t :w(pyH(B)) — C* (where 7(w) = €>™). Then
there exist choices (unique up to addition of integers) of ¢, ®1 such that g;(w) = w + o(1)
as I'm(w) — +o0 and g;(0) = 0, g} (0) = g{(0) = 1. For this g;, we have g, (co) = oo and
7 (c0)| > 1.

b) Because B is simply connected and contains only one critical value, the immediate
basin B’ of 0 for the map g; has the same property. Similarly one can find g, &3 (but with
p2(C) = C* instead) and define g3, g2, g, with the same asymptotic behavior at 0 and oo.
There are lifts of go by 7= and ¢; o 7~1 successively. We call them h and h.

c) Here is the diagram of our construction:

s o 2w
Giio sl sl LThgp
UL = &w

where § = Tkgiiizmi and s = giig?i. The other terms are going to be defined below.
Fix U a small disc neighborhood of 1/2. There is a disc W and a choice of 7! such that
o1 om0y maps W onto U bijectively with bounded derivative.
Since oo is repelling for g,, the map gz behaves like a translation w — w4p with I'm(p) > 0
as I'm(w) — —oo. So for m € N there are W) disjoint discs such that g.W, = W/

m—1
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Im(W})) — —oo as m — oo and g5 : W', — W is a bijection with bounded derivative
(independent of m).

Fix i > 0 large. In the rectangle R(n) = {w, |Rw| < n, Im(w) € [-n, —27]}, there are N
disjoint dises Wy, -+, Wy, with N > an?, and l;, m; € Z, m; > 0 such that THW,; = W,
Therefore for each ¢ the map Tligg” : W; — W is a bijection with bounded derivative
(independent of ¢ and 7).

Let 75! : C* — RT — {w|0 < Rw < 1} be the special branch of 7=!. Set U; = ¢ o075t o
p2(Wi).

One can easily check that for 7 large and a good choice of h, we have U; C U and there
is k € Z (independent of 7 and ) such that fFglih™iU; = U. Set G; = frglih™|y..

d) The derivative |G| is controlled by 1/|(¢107m5 ' o) (w)], w € W; C R(7), the rest has
bounded effects. On the other hand, when 7 is large, both ¢ and ¢3 can be approximated
by I(w) = —1/w. A simple calculation shows that |G| ~ n(logn)%.

Some key words: dynamical spaces, parameter space, product space, implicit function theorem,

Rouché’s theorem, holomorphic motion.
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Classification in Algebraic Geometry

A Short Course organized by Rosa M. Miré6—Roig and Raquel Mallavibarrena

The session consisted of three talks organized with the aim of present to a non-specialized
audience some basic facts and main problems that belong to this relatively recent but vast
field of Algebraic Geometry.

The first talk was given by Margarida Mendes—Lopes and it was essentially an introduction,
with basic concepts and definitions, all this with the goal of making the other two talks
understandable.

Mireille Martin—Deschamps spoke in the second place. She presented some aspects of the
problem of classification of space curves: results, techniques,...

The third talk was given by Emilia Mezzetti. She also focused on a classification problem,
the one for projective varieties of small codimension. Here, as well as in the previous talk,
the use of sheaves, schemes and cohomology was proven to be a powerful tool. In fact, these
techniques have made possible to talk of the so—called modern algebraic geometry.

There was also a kind of example session where several computations were made concerning
some well - known problems that have an elementary treatment.

Rosa Maria Miré—Roig
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On some notions in algebraic geometry
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Foreword. This paper is an expanded version of the talk given to the 7" meeting of EWM.
It was meant as a (very basic) introductory talk and does not propose to be a survey on
surface theory.

1. Some notions

We will be dealing with the projective space P” over the complex numbers C. The projective
space P” is the set of 1-dimensional vector spaces of C*t! and for each point p € P” its
homogeneous coordinates (zo, ..., z,) are defined up to scalar multiple.

Given an homogeneous polynomial f(zg, ..., 2,) its locus of zeroes is a well-defined subset
of P, called an algebraic hypersurface.

More generally a projective closed algebraic set V' C P” is the common locus of zeroes of
a finite set of homogeneous polynomials, i.e. V = {z = (20, ...,2,) : fi(z) = ...fx(x) = 0}.
A closed algebraic set is a projective algebraic variety if V' is irreducible (i.e. V cannot be
written as the union of two proper subsets which are algebraic sets).

Given an algebraic closed set we consider the ideal I(V) formed by all homogeneous
polynomials which vanish identically on the points of V. This ideal is a finitely generated
homogeneous ideal and it will be a prime ideal if and only if V is irreducible.

Associated to a variety V' C P we have its dimension and its degree.

There are various equivalent ways of defining the dimension, but possibly, since we are
talking about algebraic varieties over the complex numbers, the easiest way is defining the
dimension of V' as its dimension as a complex topological space. Other possible ways (which
are equivalent) are defining the dimension as d := n — r, where r is the maximum rank of the
matrix (gij) evaluated over every point p € V, where ¢; are a set of generators for I(V) or

equivalently we can define the dimension as the maximal m such that V' projects surjectively
to P,

Now the degree can be again defined alternatively as the number of points of intersection
of V with a general linear subspace of complementar dimension, or then as the number of
points on a general fibre of a projection which realizes the dimension. For an hypersurface
the degree is simply the degree of a polynomial generating /(V') and the dimension is n — 1.

A variety of dimension 1 is a curve, whilst one of dimension 2 is a surface. As simple
examples one has for instance the cuspidal cubic curve in P? defined by 3%z — 23 = 0, the
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twisted cubic curve in P? which is defined by the equations
Tokg — x% =0, zgr3— r129=0and 23— x% =0,

or a complete intersection of two quadrics in P%.

Let us point out that similarly to what happens with manifolds we can also give a notion
of an abstract algebraic projective variety which does not depend on the ambient space we are
considering and the dimension does not depend on the projective space we are considering.
Of course the degree will not be invariant in this context. Anyway for our purposes it will
be enough to keep this definition as the locus of solutions of a finite system of polynomial
equations in mind.

Given an algebraic variety we can define a rational function on it as being a function
defined locally by a quotient of homogeneous polynomials of same degree. A rational map
between algebraic varieties V. — W C P” is defined by v — (1, fi(v), ..., fu(v)) where f;
is a rational function on V. Now the main thing to remark is that a rational map is not
necessarily defined everywhere because there are points which are poles of every rational
function appearing. A morphism is a rational map everywhere defined and we will say that a
rational map is birational if it has an inverse which is a rational map. In this case basically
what happens is that the two varieties are the "same” in the complement of a closed algebraic
set.

We will be mainly concerned with smooth (also called non-singular) projective varieties
which are those such that the rank of the matrix above is constant at every point. Although
apparently we are missing out a lot that is not the case (at least up to birational equivalence)
due to Hironaka’s desingularization theorem, which says it is possible given a variety to find
a non-singular variety which is birational to it (by blowing-ups).

2. What is classification?

There are various problems of classification that arise. One is exactly classifying algebraic
projective varieties up to birational equivalence and finding a way of describing all equivalence
classes and this puts us into theory of moduli.

Another is trying to find out which smooth varieties and of a given dimension live in some
P", and what degrees can turn up. Yet another is trying to classify according to the the
”minimal” number of generators for its homogeneous ideal in P".

It turns out that every smooth algebraic variety of dimension d can be isomorphically
projected in P2%t1, So for instance one possible problem of classification is trying to find for
given degrees which smooth varieties of dimension d are embedded (and with which degrees)
in P* where k& < 2d.

Suppose then we want to classify smooth varieties of a given dimension up to birational
equivalence. We would like to have a way of individuating in each birational equivalence class
a representative. For curves it can be shown that each birational equivalence class contains
a unique smooth curve. In the case of surfaces this is no longer true, but nevertheless we can
find minimal smooth surfaces. A surface S is said to be minimal if any birational morphism
of § — S, with " another smooth surface, is an isomorphism. Given any smooth surface
X it is always possible (by blowing down the exceptional curves) to find a smooth minimal
surface S together with a birational morphism X — 5. S is said to be a minimal model
of X. Now what happens for surfaces is that except for the surfaces in a certain class (i.e.
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those with kod(X) = —o0, see section 3) every birational equivalence class contains an unique
minimal non-singular model and this helps a lot with the classification.

In this talk I'll focus precisely on the classification of surfaces up to birational equivalence,
more precisely on the usually called Enriques-Kodaira classification. For this I will need :

3. Some more notions

A divisor D on a smooth variety X is a formal finite sum D = > a;C; where q; is an integer
and C; is any subvariety of X of codimension 1. A divisor is effective if a; > 0 for every 7. The

set of all divisors with the obvious operation is a group. To every non-zero rational function
f on X corresponds the divisor of f, (f) which is defined as being the difference (f)o — (f) o
of the two effective divisors (f)o, (f)eo given respectively by the zeroes and the poles of f.
Two divisors are linearly equivalent if their diference is the divisor of some rational function.

If X is a smooth surface we can define the intersection number of two divisors. This
intersection number for two curves meeting tranversally at smooth points is exactly the
number of points in which the curves meet.

In the complex case it can be defined as an intersection number in homology. In fact each
divisor D corresponds to a homology class in Hy(X,Z). Given two divisors Dy, Dy we can
define the intersection number Dy - Dy as being the intersection number of their homology
classes. This intersection number can also be defined in purely algebraic terms.

Given a divisor D on an algebraic variety one can associate to it a vector space L£(D)
consisting of 0 and the rational functions f such that div(f) + D is an effective divisor. If
this vector space is non-zero and n 4+ 1 dimensional we can consider the map ¢p : X — P
given by the functions of a basis of L(D).

In particular one can speak about the pluricanonical maps of the variety X which are
associated to the multiples of the canonical divisors of X. What are those?

The canonical divisors can be defined in purely algebraic terms but in this context, since
we are considering varieties over the complex numbers, we are going to use the language of
complex manifolds.

In fact any smooth algebraic variety over C is a compact complex manifold with the
holomorphic structure inherited from P™.

Let us remark that the class of compact complex manifolds is bigger than the class of
smooth algebraic varieties. A compact complex manifold which is also an algebraic variety
is said to be (projective) algebraic. Nevertheless one has: :

Theorem 1 FEvery compact complex manifold of dimension 1 (Riemann surface) is algebraic.
A compact complex manifold X of dimension 2 is algebraic if and only if a :=tr.degc M(X) =
2, where M(X) is the field of meromorphic functions on X.

If the compact complex manifold X is projective algebraic it turns out that any meromor-
phic function is actually a rational function.

Associated with each compact complex manifold of dimension n one has the canonical line
bundle which is Kx = A™Ty/, where Ty is the (holomorphic) cotangent bundle. So K is the
line bundle which holomorphic sections are the n-forms on X ,( for instance in the surface case
locally if z1, z3 are local coordinates local holomorphic sections are given by f(z1, z2)dz Adzy
where f(z1, z2) is an holomorphic function).
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Having the canonical bundle we define the pluricanonical bundles K?ém.

The canonical (resp. pluricanonical) divisors on the smooth projective variety X are
then defined as the divisors obtained as the divisor of zeroes minus the divisor of poles of a
meromorphic section of Ky (resp. ICg%m) The canonical divisors are denoted by Ky and the
pluricanonical by mK x (omiting the subscript when there is no danger of confusion).

This takes us to yet another definition: Kodaira dimension of X, kod(X), as the maximum
dimension of the image of ¢, i, for m € N. One has always kod(X) < dim (X)), and if
kod(X) = dim X, X is said to be of general type. If L(mK) = 0, by convention dim
Gmi (X) = —o0.

The Kodaira dimension is a birational invariant and this gives us a very rough classification
of varieties with respect to birational equivalence which is done by dividing them in various
classes according to the Kodaira dimension.

The Kodaira dimension in fact can be defined for any compact complex manifold. In the
case of surfaces it turns out that if the compact complex surface X has kod(X) = 2, then it
is an algebraic surface.

4. The rough classification of minimal surfaces

For surfaces one can describe the surfaces in some of these classes in more detail. To explain
this still rough classification of we will need some more notions.

A surface S is called elliptic if it admits an elliptic fibration, i.e. a morphism f onto a
smooth curve B such that almost all fibres f~1(p) are smooth elliptic curves (i.e. Riemann
surfaces of genus 1).

Associated with a surface we have various invariants. Some are linked to the canonical
divisors :

Py == dimcL(K) =number of linearly independent 2-forms (geometric genus);
pi = dimcL(mK) (plurigenera)

¢ := number of linearly independent 1-forms, called the irregularity;

X(Os) ==py —q+1;

K? (also denoted by ¢%):= the self intersection of a canonical divisor;

c9:= topological Euler-Poincaré characteristic.

These invariants are linked by various relations of which maybe the most relevant is the
Noether’s formula:

K2+ cy = 12x(0s).

Let us notice that all these invariants can be recovered from the topology of S. Also pg, p; and
q (and x(Og)) are birational invariants whilst K% and ¢y are not. For birational equivalence
classes C with a unique minimal model S one has that K% is maximum for the surfaces in C.

Let us notice also that in spite of not looking so via Hodge theory it can be shown that
all these invariants are in fact topological and computable from triangulations.

Now we can give:

The rough classification of minimal algebraic surfaces (Enriques):
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(I) Kodaira dim = —oo: These are the surfaces for which p; = 0 for all ¢ € N and are either
P? or ruled surfaces (i.e. a P'—bundle over a smooth curve) .

(I1) Kodaira dimension = 0 : These are the surfaces for which p; < 1forall i € Nand p; # 0

for some ¢ € N and are divided in the following different classes:

(a) bielliptic (sometimes called hyperelliptic) surfaces - admit a locally trivial fibration
over an elliptic curve with elliptic fibre (p, =0, ¢=1)

(b) K3 surfaces: These are the simply connected surfaces with Ky = Ox (p, = 1,
q=0).

(c) Enriques surfaces: These are such that Kx # Ox and 2Kx = Ox (p, =0, ¢=0)
and are quotients of K3 surfaces by a fixed point free involution.

(d) Abelian surfaces: These are quotients of C* by some lattice (p, = 1, ¢ = 2).

(ITI) Kodaira dimension 1: These surfaces have p; > 1 for some ¢ € N but the corresponding
pluricanonical image is a curve and are all elliptic surfaces.

(IV) Kodaira dimension 2: These are the surfaces for which some pluricanonical image is a
surface and are called surfaces of general type.

Examples of surfaces in (I) are the projective plane, any smooth surface of degree n — 1
in P", any surface isomorphic to the product P! x €', with C' a smooth curve.

Let us notice that the surfaces with Kodaira dimension 2 form a much ”bigger” class.
For instance for the smooth surfaces in P* which are hypersurfaces, hence defined by some
polynomial of degree d, one has that if d = 2,3, S is birationally equivalent to P2, if d =4 S
is a K3-surface, whilst if d > 5 S is of general type.

Let us also remark that this classification can be extended to compact complex surfaces,
not necessarily algebraic. For details see [BPV] or [s-Pe].

5. Surfaces of general type, geographical questions and pluri-
canonical models

“Most” surfaces will be of general type and one does not have a neat description like the ones
for Kod< 1. One has:

Theorem 2 (Bombieri [B]) Let S be a minimal smooth surface of general type. Then for
m >> 0, ¢ is a birational morphism and the images ¢ (S) are all isomorphic. Fur-
thermore ¢ (S) is a surface having at most double points as singularities, and such that its
minimal desingularization is isomorphic to S.

Corollary 3 Minimal surfaces of general type with given with given K2, ¢y (or equivalently
given (K%, x(Ogs)) are surfaces of given degree in a given PN and therefore are parametrized
by a finite union of irreducible algebraic varieties (i.e belong to a finite number of families).

By the Riemann-Roch theorem K?%, y(Os) completely determine p;, i > 1 for minimal
surfaces of general type and hence we have this corollary, which Gieseker used to prove the
existence of a coarse moduli space for surfaces of general type:
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Theorem 4 (Gieseker) For each pair of integers such that 9z > y > 2z — 6 there exists a
coarse moduli space M, ,, for all the isomorphism classes of minimal surfaces of general type
with invariants K* =y and x(Os) = x. Furthermore M, is the union of a finite number
of quasi-projective varieties (in particular it has a finite number of connected components).

Where do these relations appearing in Gieseker’s theorem come from? For minimal surfaces
of general type one has the following relations between the invariants:

(i) K* >0, c2 >0 (and x(Os) > 0).
(ii) K2+ c3 = 12x(Os) (Noether’s formula again).
(iii) (M.Noether-Bombieri) K2 > 2y(Os) — 6 and if ¢ > 0, K% > 2x(0Os).

(iv) (Bogomolov-Miyaoka-Yau) K? < 3¢y (equivalently K% < 9x(0Os)).

Within these restrictions one type of question (known usually as a geographical question)
is for what pairs of natural numbers (n, m) satisfying the above relations there are minimal
surfaces of general type with K2 = n, y(Og) = m.

For what concerns geographical questions roughly the answer is for almost all pairs and
this is proved by constructing very special surfaces.

The type of geographical results one has:

Theorem 5 (chronologically Persson [P], Sommese [S], Chen [C1], [C2], Ashikaga [A]) For
each pair of natural numbers (x,y) such that 9z — 347 > y > 2z — 6 or 8z >y > 22 — 6
(with the possible exceptions of y = 8z — d,d = 1,2,3,5,7) there exists a minimal surface S
of general type such that K% =z, x(Os) = y.

Another type of questions are the so called botanical questions: given a pair of numbers
(K?,x(Os)) (or equivalently (K?,c3) in the allowed region classify all minimal surfaces of
general type with these invariants, describe families and if possible describe the moduli space
.This last is almost impossible as follows from the following

Theorem 6 (Catanese [Cal], [Ca2], [Ca3], Manetti [M] ) For all n € N there is a pair
(K2, x(0s)) such that the moduli space has more than n irreducible components, pairwise of
different dimensions.

Nevertheless in some cases one has descriptions of the moduli spaces, like the ones given
by Horikawa for surfaces with K? — 2y(QOg) — 6 < 2 (see [Ho]).

There are a lot of other problems on surfaces I did not refer to, as the problems of
equivalence of differentiable stuctures on the topological manifold underlying an algebraic
surface or which of the above properties and classification hold for surfaces defined over a
field of characteristic p.
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1. Smooth space curves

In the first paper on algebraic geometry, Margarida Mendes Lopes explained the structure
of the projective space over the field C. A space curve is a closed algebraic subset C' of the
projective 3-space P, which has dimension 1 over C (note that it has dimension 2 over R).
It is defined by homogenous polynomials (£, ..., F,) belonging to the ring of polynomials in
4 variables S = C[Xg, X1, X2, X3]. Since a single polynomial defines a surface (of dimension
2 over C), we have r > 2.

The projective 3-space P is obtained by gluing together 4 affine spaces, so a space curve
C' can be covered by 4 affine pieces. If we want to study local properties of the curves, that is
properties in a neighbourood of a point, we can always restrict ourself to a point contained
in an affine piece of the curve. For example, we say that a point P = (ag, a1, as, as) of C
is smooth (or that C' is smooth at P) if the tangent space to C' at P has dimension 1. To
express it algebraically, we can suppose that ag = 1 and work in the open subset Xy # 0.
Let fi(z1,22,23) = Fi(1,21,22,23), for ¢ = 1,...,r. Then P is a smooth point of C'if and
only if the rank of the matrix (gg (P)) is 2.

A curve is smooth if and only if it is smooth at every point.

Examples : the curve defined by the polynomials (X7, X3) is smooth (it is a line), and the
curve defined by the polynomials (XoX? — X3, X3) is not smooth (it has a cusp at the point
(1,0,0,0)).

It is possible to show that a “general” plane intersects transversally the curve in d distinct
points, where the number d, which doesn’t depend on the plane, is called the degree of the
curve (a plane which is not general is a plane which is tangent).

Now a question : why are we interested in space curves 7 We can of course define projective
curves in P” for n > 3, but one proves that, if C'is a smooth curve contained in P” for n > 3,
there exists a projection 7 from P” to an hyperplane P"~! such that the restriction of 7 to '
is an algebraic isomorphism from C onto its image. In other words, every smooth projective
curve can be embedded in P3. On the other hand plane curves are in some sense special.
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Example : let J be the ideal generated by the 2-minors of the matrix

Xo X1 Xy

Xy Xy X3
The 2 quadric surfaces defined respectively by XoXs—X? and X;X5— X2 have a line (defined
by (X1, X2)) in common. Their intersection is a curve of degree 4 (by Bezout theorem),
therefore it is the union of the line and a curve C of degree 3, called a twisted cubic, whose

ideal of zeroes is J. More generally, any curve projectively equivalent to C'is called a twisted
cubic. If one projects C' to a plane, one gets a plane cubic curve with a singularity.

2. Complete intersections. Liaison.

We have seen that a space curve is defined by at least two homogenous polynomials. From
this point of view, the simplest case is therefore the case when the curve is defined by exactly
two homogenous polynomials F' and G (without common factor, since the dimension is 1).
Such a curve is called a complete intersection (of two surfaces) (c.i. for short). Its degree is
simply the product of the degrees of F' and . For example, plane curves of degree d are c.i.
of a plane and a surface of degree d.

Like plane curves, c.i. are in some sense special. The smooth curves of least degree which
are not c.i. are the twisted cubics. In fact, if the degree of a c.i. is a prime number, one of
the two surfaces has degree 1, so is a plane. And we have seen that the twisted cubics are
not plane.

Let again C' be a twisted cubic. We have seen that it is contained in the intersection of
two quadrics (which is a c.i.), and that the “residual” intersection is a line. We say that the
cubic and the line are linked by the c.i.

Definition Two curves C' and C” without common component are linked (by a complete
intersection X) if X is the union of C' and C".

In fact, it is possible to enlarge this concept of liaison to curves having some common
components, but I will not explain it here.

Now this relation is reflexive and symmetric, but not transitive, it generates an equivalence
relation called liaison or linkage.

Definition Two curves C' and C” are in the same liaison (resp. biliaison) class if and only
if there exist an integer n and a sequence Co = C',CY,...,C, = C', such that C; and Ciyq
are linked by some complete intersection (resp. and n is even).

This concept has been introduced first by Apery ([Al], [A2]) and Gaeta ([G]), and devel-
opped by Peskine and Szpiro ([PS]). It turns out that it is a very useful tool in the classification
of space curves. There are precise relations between the numerical invariants of the curves
(degree, genus, dimension of the cohomology spaces) and we will see further that it is possible
to characterize the biliaison classes. But, even if a curve is smooth, a linked curve can be non
smooth. So, even if one is interested in smooth curves, it is necessary to study more general
locally Cohen-Macaulay (1.C-M for short) curves. It is not necessary to give here a precise
definition, but these curves have two important properties:

— 1) the complete intersections are 1.C-M,

—ii) if two curves C' and C” are linked, C'is I.C-M if and only if C” is .C-M.

Therefore it is the natural context for liaison problems.
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3. Functions on smooth space curves. Hartshorne-Rao module

Let f be a polynomial in 3 variables zq, 22, 3. It defines in a natural way a function from
the open subset of C' where Xy # 0 to C. Morover, if f is one of the f;, or more generally,
if f belongs to the ideal (fi,..., f.) generated by the f;, the corresponding function is the
zero function. So we obtain a map, which is a ring homomorphism, from the quotient ring
A = Clay, z9,23]/(f1,..., fr) to the ring of functions on C. One can prove that, if C' is
smooth, this map is injective. So A can be identified with a subring of the ring of functions
on C'. Elements of A are called rational algebraic functions on C', defined where Xy # 0.

Suppose for simplicity that the plane “at infinity” Xo = 0 intersects transversally the
curves in d distinct points Py,..., P;. If f is a non-zero element of A, we want to describe
the corresponding function in a neighbourood of the F;. For that purpose, we have the notion
of “order” which is defined in the following way :

Let f(%,%,%) = F(Xo, X1, X3, X3)/ X}, where I is an homogenous polynomial of
degree n. It is the equation of a surface S, and we can define the “multiplicity of intersection”
m(C, S, P;) of C'and S at P; (it is rather complicate, but it is 0 if S doesn’t go through P;, 1
if C"and S intersect transversally at P, and > 2 if S is tangent to C' at F;). Then the order
of f at P, is the number ordp, f = m(C, S, ;) — n. If this order is positive (resp. negative),
it means that f can be defined (resp. cannot be defined, we say that P, is a pole of f) at P.
With this definition, we see that ordp, f > —n.

Example : let (' be the curve defined by the polynomials (X? — X2 — X; X, X3). It
has 2 points at infinity, P, = (0,1,1), P, = (0,1, —1). Let f be the function defined by the
polynomial z1 —22+A. Then one has ' = (X; — Xy+AXo)/Xo and ordp, f = m(C, S, P,) —1.
Since S doesn’t go through P, we have ordp, f = —1. If X £ —1/2 (resp. A = —1/2), S is
transversal (resp. tangent) to C' at Pj, so we have ordp, f = 0 (resp. ordp, f = +1). In any
case, P is a pole of f, but f is defined at P;.

Linear systems on smooth space curves.

Thanks to this notion of order, we can introduce a filtration on the ring A by setting, for
n € N,

Ap={feAlf=0orordpf>-nV¥i=1,...d}.

This is a finite dimensional vector space over C, which is called by the algebraic geometers,
for reasons that I can’t develop here, the space of sections of the line bundle O¢(n). It is
possible to define it in an intrinsic way.

For example, for n = 0, we obtain the set of global functions on the curve (functions
defined everywhere).

For every positive n, recall that S, is the set of homogenous polynomials of degree n; there
exists a natural map of vector spaces ¢,, : 5, — A4, defined in the following way: if I/ € .5, is
non-zero, ¢, (F') is the image of f = F(1, 21, 22,23) in the quotient ring A (we have already
seen that if /' € S, the order of f at P; is > —n).
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Moreover, we can put in a natural way a structure of graded S-algebra on the direct sum
Ao = BpenAy, so that the direct sum of all the ¢, gives an homomorphism ¢¢ of graded
S-algebra from S to A¢. Of course this map is not injective (every I} defining the curve goes
to 0), but we will see now that it can also be not surjective. However,

—if nis >> 0, orif n is << 0, then ¢, is surjective,

— if C'is a complete intersection (defined by two polynomials F' and ), then ¢¢ is
surjective (and Ac = S/(F,G)).

Definition  The Hartshorne-Rao module, or Rao-module, Mc of a curve ' is the
cokernel of the map ¢¢. It is a graded S-module of finite length (because it has only a finite
number of non-zero homogenous components).

This module, which was introduced by Hartshorne and studied by Rao has very nice
properties, and in some sense, it reflects algebraic properties of the curve. Its non-zero
elements correspond to functions on the curve, which not come from functions defined on the
projective space.

Example : let C' be the curve defined by the polynomials (Yp X3, Yo X3, X1X2, X1X3), where
Yy is a linear form, independant of Xy, X3, X3, and not a multiple of Xy. It is the union
of the two lines, L (defined by (Yo, X1)) and L’ (defined by (X3, X3)) which don’t intersect.
There are two points at infinity, P on L and P’ on L'.

Since the two lines are disjoint, one proves easily that the ring of rational algebraic func-
tions on C' (defined where Xy # 0) is the product of the two corresponding rings of functions
on L and L'. Therefore, Ac is in a natural way, the product of Ay, = S/(Yy, X1) and
Apr = S/(Xz2, X35). The map ¢¢ : S — S/ (Yo, X1) x S/(X32, X3) is the product of the two
natural projections. Hence the Rao module M¢ is S/((Yo, X1, X2, X3). It has only one non-
zero component, of dimension 1 and in degree zero., which correspond to the function taking
the value 1 on one of the lines and 0 on the other one (there are two such functions, but their
sum can be lifted on the projective space).

More generally, if C' is the disjoint union of two c.i. (Fy, F3) and (F5, Fy), one proves that
MC = S/(F17F27F37F4)-

4. Liaison and Rao module

There are nice connexions between these two notions, and they are summarized in the fol-
lowing results :

1. Two curves C' and C’ are in the same biliaison class if and only if there exists h € Z
such that Mo ~ Mci(h) ([R]) (if M = &M,, is a graded S-module, M (h) is the graded
S-module defined by M (h), = M, 15, we say that the degrees are shifted by h to the
left).

Example : the curves C' with Mg = 0 are in the same biliaison class (which contains
all the c.i., but not only c.i., for example the twisted cubics).

2. Let M be a graded S-module of finite length. There exist a smooth curve C' and an
integer h € Z such that M ~ Mc(h) ([R]).

Hence the Rao-modules (up to a shift) characterize the biliaison classes.
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3.

So

It is easy to prove, by an elementary geometric construction, that, starting from an
existing Rao module, every right shift can be obtained. But there exists a minimal left
shift ([Mi]). A corresponding curve is called a minimal curve in the biliaison class.

. One knows how to construct explicitely the minimal curves from the module associated

with the biliaison class ([MD-P2]).

One knows how to obtain the curves in the biliaison class from a minimal one ([BBM],[MD-

P2)).

the classification of these modules, which is an algebraic problem, will help us for the

classification of space curves.
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1. Introduction

The subject of my paper is the “classification of embedded varieties”, especially in low codi-
mension. To clarify the meaning to be given to this term, let me start with the following
theorem, which is classical:

Theorem 1 Let X be a smooth projective variety of dimension n over C. Then X can be
isomorphically projected in P?"+1-

Idea of proof: the projection centered at a point P is an isomorphism from X to its image
if and only if P does not belong to any secant or tangent line to X. The secant variety of X,
SecX, which is the union of all secant and tangent lines to X, has dimension at most 2n+ 1.

So if X is a curve, “natural setting” is P3, for surfaces P°, and so on. In other words, in P?
we find all curves, up to isomorphism. So to study the isomorphism classes of smooth curves
(the moduli space) it is enough to study those of curves lying in P, This was the subject of
the paper by Mireille Martin-Descamps.

If X may be embedded in a projective space of dimension < 2n+1, then X is in some sense
special. For example: plane curves, surfaces in P2 and P4,.... We will try to understand in
what sense X is special. Moreover there is the natural problem of the classification of such
special varieties.

Recently there has been new interest in this subject, due particularly to a conjecture
(“Hartshorne’s conjecture”) and a theorem (by Ellingsrud — Peskine). Moreover new tech-
niques (as for example adjunction theorems and computational methods) have led to consid-
erable progress.

2. Preliminary facts.

The first important observation is that the varieties of dimension n lying in P**! (i.e. of codi-
mension 1) are precisely the hypersurfaces: they are sets of zeroes of a unique homogeneous
polynomial in n + 2 variables. Moreover, for any degree d, a general polynomial of degree d
defines a smooth hypersurface.

We may say that, in codimension one, “special” means: only one equation is needed.
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When we take the intersection of two hypersurfaces, then we get a variety which is not
necessarily irreducible.

A simple example in P3: take the irreducible quadrics of equations
ToTo — x% =0, =zpz3—z129=0.

The intersection contains the line 9 = 21 = 0; the other component is the skew cubic X,
given parametrically by:

To = 837 T = Szt, To = st2, Ty = 3.

So the two components are curves intersecting at the point (0 : 0 : 0 : 1). If we intersect
further with the quadric

123 — x% =0,
then the dimension does not decrease: we find precisely X.

In general, we have the following:

Theorem 2 Let X, Y C P™ have dimension r, s respectively. Let Z be an irreducible com-
ponent of X NY. Then dim Z > r+ s — m.

In particular, if Xy, X, ..., X, are hypersurfaces in P™ and Z is an irreducible component
of their intersection, then dim Z > m — r. Note that in the previous example the inequality
was strict.

Now we can define the varieties complete intersection: X of dimension n in P is a
complete intersection (c.i. for short) if X is the transversalintersection of m—mn hypersurfaces,
or, equivalently, the homogeneous ideal of X, I(X), is generated by m — n homogeneous
polynomials.

It is possible to prove that a general c.i. variety is smooth. The canonical sheaf of a c.i.
X of type ri,....,rs in P is Ox(r1 + ... + rs — m — 1); this implies that, except for a few
particular cases, the c.i. are varieties of general type.

By Bezout’s theorem, if X is a c.i. such that
I(X)=<F1,...,. > r=m-—n,
then the degree of X satisfies

deg X = (degl)(degly)...(degF,)

3. Hartshorne’s conjecture (1974).

It says the following [H]:
Let X C P™ be a smooth variety of dimension n. If n > Q?m, then X s a complete
intersection.

The assumption is that the codimension of X is “small enough” with respect to the
dimension, i.e. codim X :=m —n < 2. So, in this range, to be “special” should mean to be
a complete intersection.
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The first significant case is in P7 with codimension 2. It is easy to construct examples of
non c.i. smooth varieties of small dimension. For example: any skew cubic curve in P2 is not
c.i. by Bezout, because its degree is prime; any curve in P? with Hartshorne — Rao module
not 0 is not c.i.. Moreover, cones over non c.i. curves provide examples of singular non c.i.
varieties in the range of the conjecture.

Support to the Hartshorne’s conjecture:
— lack of examples;

— a theorem of Barth ([B] 1970), which shows that, from a topological point of view,
smooth varieties of small codimension are similar to complete intersections.

Precisely, by the theorem of Lefschetz, if X is c.i. in P, then the restriction maps
H (P™,C) — H'(X,QC)

are isomorphisms for ¢ < n — 1. The same over Z.

Barth’s theorem: if X is smooth, then the analogous restriction maps are isomorphisms
for i <2n—m=mn — (m —n). (The same over Z was successively proven by Larsen [L]).

Hence the more the codimension is small, the more the cohomology is similar to that of
complete intersections.

Two classical examples show that the bound in the conjecture is sharp. We have the
following non c.i. varieties with 3n = 2m:

(a) G(1,4) C P?, of dimension 6, degree 5, non-degenerate (Bezout!);

(b) the spinor variety S C P, of dimension 10, parametrizing the 4—planes of a family
in a 8—dimensional quadric.

No examples in P® P! etc. (Zak [Z]: these are the unique manifolds with 3n = 2m, non
c.i. and corresponding to orbits of linear algebraic groups).

For codimension 2 varieties, the range of the Hartshorne’s conjecture is from P7 on. But
there are no examples already in P°.

Another interpretation of the conjecture is as follows: From Barth—Larsen, it follows that
the smooth varieties X of codimension 2 in P™ are subcanonical for n > 6, i.e. the canonical
bundle is wy = Ox/(k), for some integer k. By the Serre correspondence ([OSS]), each
subcanonical X is the zero locus of a section of an algebraic vector bundle I of rank 2. Such
a X is c.i. if and only if IV is decomposable: 2= O(a)®O(b). So the Hartshorne’s conjecture
for codimension 2 varieties becomes: “if n > 7, then each algebraic vector bundle of rank 2 is
of the form O(a)®O(b)”. In fact, there are no examples of indecomposable rank two bundles
already for n > 5.

Some partial results about Hartshorne’s conjecture:

e for small degree: the non-necessarily smooth varieties of small degree are all classified
(Weil [X] for d = 3, Swinnerton-Dyer [SD] for d = 4, lonescu [lol1],[lo2]) and many
others for successive degrees);

e concerning k—normality: by definition X is k—normal if the hypersurfaces of degree k
cut on X a complete linear series; c.i. are k—normal for any k;

e there exists a function N(d) of the degree, such that each non c.i. smooth X of degree
d is contained in PV ([H]). The best known estimates are:
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- N(d) ~ 3d? for any codimension (Barth-Van de Ven [BV]);
- N(d) ~ +/d for codimension 2 (Holme-Schneider [HS]);
- N(d) < 2rd — d, for codimension r (Bertram-Ein-Lazarsfeld [BEL]).

4. Varieties of codimension 2 in P* and P°.

We consider now varieties of small codimension but out of the range of Hartshorne’s conjec-
ture.

Theorem 3 (Ellingsrud-Peskine [EP], 1989) There is a finite number of families of smooth
surfaces of P* not of general type.

Here “family” means “irreducible component of the Hilbert scheme of surfaces of P4”.

Some word about the Hilbert scheme: if X is a projective variety in P™ and [(X) is its
homogeneous ideal, then the quotient ring

(C[$07 i xm]

S(X) = T(X)

is naturally graded and its homogeneous elements of degree d can be interpreted as hyper-
surfaces of degree d not containing X. The Hilbert function of X is defined by: hx(t) =
dimS(X )4 as a C-vector space. There is a unique numerical polynomial Px (¢), the Hilbert
polynomial of X, such that Py (t) = hx(t) for t >> 0, t integer. The coefficients of Px have
important geometrical meaning: they give the dimension of X, the degree, the Euler-Poincaré
characteristic y, the sectional genus of X i.e. the genus of a curve intersection of X with a
general linear space of the right dimension, etc.

An important theorem of Grothendieck ([G]) says that: fixed any numerical polynomial
P, the set of subschemes of P having P as Hilbert polynomial has a natural structure of
projective scheme, enjoying a nice universal property.

For example, for curves, fixing PP means fixing degree and genus; for surfaces degree, y
and sectional genus, etc.

So in particular the theorem says that there is an upper bound dy on the degree of non-
general type surfaces lying in P%.

Braun-Flgystad [BF](1993): dp < 105. Then M. Cook ([C]) gave a better bound. But all
known examples have d < 15.

Analogous result for 3—dimensional manifolds in P® was proven by Braun-Ottaviani-
Schneider-Schreyer ([BOSS] 1993). In this case there are examples up to degree 18.

After the theorem of Ellingsrud - Peskine, the problem arises of giving a list of all families of
surfaces of P* not of general type; in particular rational and (birationally) ruled surfaces. Sim-
ilar problem for 3—folds in P®. This has been made for small degrees (Okonek [O1], [02],[03],
Ranestad [R], Aure-Ranestad [AR], Popescu [P] for surfaces, Beltrametti-Schneider-Sommese
[BSS] for threefolds). I would like to mention two important methods:

a) by the adjunction map. This is a classical method for studying algebraic surfaces,
which goes back to Castelnuovo and Enriques. Given X, smooth connected variety of dimen-
sion n, and a very ample divisor H on X corresponding to a line bundle L, one considers the
adjoint linear system, i.e. | Kx + (n — 1)H |, where Kx is the canonical divisor.
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Sommese-Van de Ven ([S] and [V],1979) have characterized the varieties X such that the
adjoint linear system is not base-point-free, or, equivalently, the line bundle wy @ L&("=1) ig
not generated by global sections.

They are: P with L = O(1), P? with L = O(2) (i.e. the Veronese surface), smooth
quadrics, scrolls over a smooth curve i.e. varieties X which are ruled by linear spaces of
dimension n — 1 over a smooth curve. For any other X, there exists the (regular) adjunction
mapping ¢ := Qg 4(n—1)m|- Lhe next step is the classification of the varieties X such that
(X)) has dimension < n (Fano varieties, quadric bundles, scrolls over a surface) or is not
birational (there are four examples). For the remaining varieties, ¢ contracts exceptional
divisors contained in X.

For surfaces: by iteration of this procedure, one gets either a minimal model or a surface
for which the adjunction map is not defined or not birational. For example, for rational
surfaces of low degree in P*, one can explicitly find a linear system of plane curves defining
it. For threefolds, it is necessary to study also the linear system | Kx + H | and possibly its
multiples.

b) the computational method by Decker-Ein-Schreyer ([DES]). The ideal sheaf of a
codimension 2 variety X in P™ has a locally free resolution of the form:

O—F—G—1Ix(k)—0

for some integer k and locally free sheaves F,G on P™ of ranks f, f + 1. The idea is: try to
construct X starting from F and G. Taking the cohomology table of Zx (assuming that X
exists), one looks for sheaves F and G with the “right cohomology”. Then one takes a map
¢ F — G and checks (with a computer) if the degeneracy locus is smooth. By this method,
it has been possible to refind all known examples of surfaces in P* and threefolds in P°.

5. Related problems.

Study the geometry of varieties which are not general. For example, the Veronese surface in
P4, It is a general projection of the Veronese surface V of P?, i.e. the plane embedded via
the complete linear system of the conics. This projection is isomorphic because Sec V is a
hypersurface.

(i) The theorem of Severi ([fS] 1901) says that all smooth surfaces of P* except the
Veronese surface, are linearly normal, i.e. they are not isomorphic projections of surfaces
contained in spaces of higher dimension. In fact, if X C P® X not the Veronese surface,
then SecX = P5 The smooth 3—folds of P® are all linearly normal (by a theorem of Zak
[Z]). There is a unique example of a 3—fold X which is not 2—normal: this means that the
quadrics of P° don’t cut a complete linear series on X. This example is called the Palatini
scroll; it is ruled by lines over a cubic surface of P>, Its ideal has a resolution as follows:

(%) 0— Ops = Qs (2) = Ix(4) = 0

so hY(Zx(2)) =1, hY(Zx(k)) =0 for k # 1.
There is a strict analogy of X with the Veronese surface of P* S because Zg has a very

similar resolution:
0— Oy — Qpa(2) = Zs(3) = 0

so hH(Zs(1)) = 1.
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Conjecture (Peskine, Van de Ven): X is the unique non 2—normal 3—fold of P®.

(ii) A classical theorem of C. Segre ([cS] 1921) states that, if a smooth surface S of P*
contains a 2—dimensional family of plane irreducible curves, then these curves are conics and
S is a projection of the Veronese surface of P°, hence a Veronese surface of P* or a cubic
scroll. Tt is possible to prove ([M]) that if a smooth 3—fold X of P® contains a family of
dimension 3 of plane curves, then either X is contained in a quadric or the degree of these
curves is at most 3. Let us assume that X is not contained in a quadric: then ([MP] there
are only two 3—folds satisfying this assumption: the Palatini scroll again and the Bordiga
scroll: this last one may be obtained by an exact sequence like (*), by a particular bundle
map.

(iii) A classical way for studying projective manifolds of dimension n is to study their
projections into P"*1. A theorem of Franchetta ([I] 1941) says that, if S C P*is not the
Veronese surface, then the double locus of its general projection in P is an irreducible curve.
For 3—folds in P, the general projection in P* has always an irreducible surface as double
locus. The triple locus is a curve and, if X is a Palatini scroll, then this curve is reducible:
this is the unique known example.

Work in progress of Mezzetti and Portelli is related to the points (i), (i), (iii).
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Mathematical Physics

Session organised by Sylvie Paycha

The aim of the session organised on mathematical techniques in statistical physics
and quantum field theory was to give an idea of some of the mathematical problems
that have recently arisen in relation to both these fields. Because of the wide spectrum of
the topics presented within this session, the speakers were asked not so much to go into
technical details but rather to give a brief overview of the mathematical techniques involved
in their work and to try to show the motivations behind them arising from statistical physics
of quantum field theory.

The topics of the talks were chosen in such a way that the spectrum of mathematical tech-
niques involved would be as broad as possible; probability theory (Flora Koukiou), algebraic
techniques (Marjorie Batchelor), analysis on super manifolds (Alice Rogers) and algebraic
geometry (Claire Voisin). In this sense, the emphasis during this session was not put on
a systematic presentation of the mathematical tools, but rather on how they can be used
to understand problems of physical origin such as phase transition (Flora Koukiou), the
structure of spaces of maps involved in the path space description of certain quantum field
theories (Marjorie Batchelor), quantisation of supersymmetric theories (Alice Rogers) and
some aspects of super conformal theories (Claire Voisin).

We hope these talks will give the reader some insight in these fields of mathematical
physics and convince her/him that theoretical physicists and mathematicians still have a lot
to learn from each other!

Sylvie Paycha
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Warning : This is a summary of two introductory talks given by Claire Voisin on mirror
symmetry. These notes (revised by C. Voisin) were written by S. Paycha and A. Rogers
Jollowing the lectures given by Claire Voisin. Because of the length of the talks, we could only
offer here a summary of these lectures. However, we have tried to keep the spirit of Claire
Voisin’s talk in which her main concern was not so much to go into technical details as to
give the audience an idea of the main topics of research related to mirror symmetry, a field
which is evolving rapidly. We have also tried to make these notes accessible to non specialists,
at the cost of remaining vague. The reader interested in further details is referred to Claire
Voisin’s book on Mirror Symmetry and references therein.

Abstract: Calabi-Yau manifolds are defined and the notion of a mirror pair is introduced.
The physical origins of mirror symmetry are described, together with steps towards a more
mathematical understanding.

1. Introduction

This paper is devoted to the description of the mirror symmetry phenomena; first discovered
by physicists, it should associate to a Calabi-Yau variety X a mirror X’ satisfying H??(X) =
H"P9(X"), n = dimcX = dimcX’. Furthermore, one should have an identification for
the moduli space My parametrising marked complex structures plus complexified Kahler
parameters on X with the corresponding moduli space M xs on X’ in such a way that the
two factors are interchanged.

Physicists discovered mirror symmetry via the study of superconformal field theories de-
rived from supersymmetric ¢ models on Calabi-Yau manifolds. Further information, with
important mathematical applications, is obtained from the Yukawa couplings of these theo-
ries.

2. Yau’s Theorem

In this paragraph, we recall some basic notions in complex analysis and algebraic geometry
which occur in the description of mirror symmetry that follows (see e.g [GH] ).

2.1. Kahlerian manifolds

Let X be a differentiable manifold of dimension N and Q%(X,R) denote the space of real
differential forms of degree k on X, the elements of which can locally be seen as linear
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combinations of expressions of the type dx;, A---Adxz;, with coefficients given by differentiable
functions on X, where {iy,--- it} C {1,---, N} when using local coordinates (z1,---,zn).

Using the exterior differentiation d : QF(X,R) — Q**!(X,R), one can define De Rham
cohomology spaces H*(X,R) (resp. H*(X,C)) as quotients Ker d/Imd of the space of real
(resp.complex) closed k-forms ( recall that « is closed whenever daw=0 ) on X by the space
of real (resp.complex) exact k-forms (recall that « is an exact form whenever there is a form

g such that a = dp ).

Let now X be a complex manifold of dimension n and let Q?(X) denote the space of
complex forms of type (p, ¢) on X, the elements of which can be seen as linear combinations of
expressions of the type dz; A---Adz;, Adz; \---Ndz;, with coefficients given by differentiable
functions on X (where {iy,---, 2}, {j1, -+, J;} are subsets of {1,---,n}) when using local
coordinates (z1,- -, 2).

In particular a complex two-form on X is an element of Qﬁ(’o {r Qﬁ(’l {r Qg(’z. More generally,

we have
E _ Pyq
Q% = E Q.
p+q=k

Using the operator 9 : Q%7 — Qg(’q-l_l, (defined by 0 = >_F_, dz'9/0%"), one can define in
a similar way as above the Dolbeault cohomology spaces H??(X) as quotients Kerd/Imo.
Since for fixed p, (€247, d) is a resolution of the holomorphic sheaf Qgéo, we have HP?(X) =
HY(Q%°).

A hermitian metric h on a complex manifold X is a hermitian structure h, on each tangent
space T, X which varies in a differentiable way with x.

A _Kihler manifold is a complex manifold X which can be equipped with a hermitian
structure, the imaginary part of which is a closed form (called the Kahler form) of type
(1,1) that is J-invariant, in other words, such that h = g — iw, with dw = 0, g ( resp.

w) being a symmetric (resp. antisymmetric) real form. It can also be seen as a complex
manifold X equipped with a hermitian metric h such that the Levi-Civita connexion V for
the metric ¢ = R(h) is compatible with the hermitian structure, i.e V = V% ¢ V%! and
dh(u,v) = h(V1Pu,v) + h(u, VOlv).

Let us now assume X is compact and Kéahlerian. There is a Hodge decomposition for

the cohomology spaces H’“(X7 C) into a direct sum of Dolbeaut cohomology spaces. The
cohomology spaces H¥(X, C) and HP(X) are related by:

H*X,C) = @prg=r H"(X).

Since a Kihler form w is a real closed form, one can consider its Kihler class [w] in H?(X,R)
and we have [w] € HMY(X) N H%(X,R), because w is everywhere of type (1, 1).

Lemma 1 The set of Kdihler classes in H*(X,R) is an open cone - the Kihler cone- in

HY(X)n H*(X,R).

Remark 2 In the case when HY(X) = H?(X,C), the Kahler cone is open in H*(X,R)
and hence contains integer classes. X is then algebraic by Kodaira’s theorem.
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2.2. Calabi-Yau manifolds and Yau’s theorem

Let X be a complex manifold and let T'x denote its tangent bundle (the fibre of which is
the tangent space T, X at point z), T% the cotangent bundle (the fibre of which is the dual
space T X to the tangent space at point z). Both these bundles split into a direct sum
Ty = T)l(’0 & T)O(’l7 Ty = T*ﬁ(’o & T*g(’l, T)l(’0 (resp.T*ﬁ(’O) corresponding to the holomorphic
part of the tangent (resp. cotangent) bundle and Ty" (resp. T*}') to its antiholomorphic
part.

The canonical line bundle Kx is the holomorphic vector bundle A”T*ﬁ(’o of rank 1 on X,
the fibre of which is generated by the n-form dz; A- - -Adz, using holomorphic local coordinates
(21, -+, 2,). It is trivial whenever there is a nowhere vanishing holomorphic n-form on X.

A _Calabi-Yau manifold is a compact Kihler manifold with trivial canonical line bun-
dle. Elliptic curves, abelian surfaces are examples of Calabi-Yau manifolds. They are often
obtained as hypersurfaces inside larger manifolfds, like quintics which are hypersurfaces of
degree 5 (see [GH] for the notion of degree of a variety) in the projective space P*.

Let — K x denote the vector bundle AT1°X of rank 1 on X, the fibre of which is generated
by % A A % using local coordinates (z1,---,2,). A hermitian metric & on X induces a
hermitian structure on the tangent bundle T'x (which means a hermitian structure on each
fibre T, X, the hermitian structures depending in a differentiable way on the base point ) and
hence a metric hi_x on —Kx. The Kahler metric & will be called Kahler-Einstein whenever

the curvature

1 _
WK = faah_](
2w

of h_g vanishes. This two form is related to the Ricci curvature of the Riemannian metric ¢
underlying the hermitian structure h so these metrics are in fact Ricci flat.

Whereas given « in the Kahler cone of a given Kdhler manifold, there are various hermitian
metrics h = g — iw such that [w] = «, the following theorem by Yau shows that on a Calabi-
Yau manifold, Ricci flat Kdhler metrics are in one to one correspondance with cohomology
classes of Kihler forms.

Theorem 3 (Yau) On a Calabi-Yau manifold (X, h), for any « in the Kdhler cone, there
s a unique Ricci flat Kédhler metric h = g — w on X, with Kdhler form w in the cohomology
class o € H*(X,R) of a.

3. Mirror symmetry

3.1. Deformations of complex structures

A complex structure on X is described in terms of a field of linear operators J,.,z € X
each acting on the tangent space T,X with the property that J2 = —I (this yields a
pseudo-complex structure) and satisfying an integrability condition (which makes the pseudo-
complex structure into a complex structure). The eigenspaces of J, corresponding to the
eigenvalues ¢ and —i yield a splitting T, X = X & T2 X. A deformation of the complex
structure is a deformation J; of this field of operators J which yields another splitting

T,X =1, X & Ty X.
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Let us introduce the Dolbeault cohomology group defined as the quotient space
HYTyx) = Ker(d: Ty’ @ Q%' = T3° @ Q%) /Im(0: Ty° — T3° @ Q%)

It is a general fact that H'(Tx) parametrizes first order deformations of the complex struc-
tures on X. An important fact is a result due to Bogomolov, Tian and Todorov and proved

recently in a more algebraic way by Ran concerning deformations of complex structures on a
Calabi-Yau manifold.

Theorem 4 The small deformations of the complex structure J on a Calabi-Yau manifold
form a smooth family -the Kuranishi family-whose tangent space at X is HY(Tx).

Remark 5 Deformations of the complex structure do not modify the triviality of the canon-
ical bundle Ky.

3.2. Moduli space

Although the cohomology group H!''(X) in which lies the Kahler cone is naturally real, one
is led to complexifying the K&hler cone, thus introducing a complexified Kahler parameter
w = a+1if, where a is in the Kédhler cone and 8 € H%(X,R) is defined modulo 27 H%(X, Z).

For each complex structure J; on X making X into a complex manifold Xy, we can define
such a complexified Kéhler parameter w € H?(X;, C) modulo 2ir H*(X,Z). Assuming that
the manifold X satisfies the condition H*(X,C) = HY!(X), the Kihler cone is open in
H?(X,R) and hence w varies locally in an open set of H?(X;,C). H?(X;, C) being locally a
constant vector space independent of ¢- this means that deformations of the complex structure
X — X; followed by deformations of the Kihler structure w on X; can be locally interpreted
as products of complex deformations and Kahler deformations.

Let X be a Calabi-Yau manifold. The moduli space Mx = {(X;,w)} is the set of couples
with first term given by an isomorphism class of complex structures X; on X obtained
by deformations J; of the initial complex structure J on X and second term given by a
complexified Kédhler parameter w on X;. From the above discussion it follows that if X
satisfies the condition H?(X,C) = HM(X), then My is locally a direct product. However,
this product structure does not hold in general globally, in particular since the Kahler cone
can depend on t.

This local product structure reads on the level of tangent spaces as:
TMy = HYTx)® H' (Qx)

since H'(Tx) describes infinitesimal deformations of complex structures and H'(Qx) de-
scribes infinitesimal deformations of Kéahler strutures.

3.3. Mirror symmetry

Mirror symmetry predicts the existence for a given Calabi-Yau manifold X, of a Calabi-
Yau mirror manifold X’ of same dimension as X and such that there is an isomorphism
M My =2 Mx: by which complex deformations and Kihler deformations are swapped or
in other words with the property that the local product structure of moduli space is preserved
but the factors exchanged.
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This “conjecture” predicted by physicits cannot be completely true because there are rigid
Calabi-Yau manifolds which have no complex structure moduli, whose mirror could thus not
even be Ké&hlerian. Although it has been confirmed in a wide range of cases it is not yet
mathematically fully understood.

Remark 6 The manifold X and its mirror X’ are in general topologically very different!

The conjecture mathematically translates as follows. Since the local structure of My
arises from the splitting

TMx =H"(Tx)® H (Qx),
one expects the tangent map M, to M to induce isomorphisms:
HY(Tx) ~ H'(Qx)
and
HY(Qx) ~ HY(Tx)).
More generally, one expects a sequence of isomorphisms:
HP(AT'x) ~ HP(A'Qx)

Since the canonical line bundle Kx is trivial, the holomorphic bundles ATy and A" 9Qx
are isomorphic, using a global section of Kx and this induces isomorphis ms:

Hp(AqTX) ~ Hp(An_qQX)

where n is the dimension of X and hence the _Betti numbers h?4(X') = dimHP4(X’) of X'
(see [GH]) should be equal to A"~ P7(X) of X. Hence, the topology of X' is determined by
that of X.

4. Mirror symmetry and physics

4.1. The N=2 supersymmetric c-model

Let (X, ¢) be a Riemannian manifold. Just as point-particles are classically described by paths
¢ :[0,T] — R? evolving in space-time which minimise the energy S(T) = fOT H%Hz given in
terms of their length, we shall define a bosonic o- model classically by “paths” ¢ : ¥ — X

defined as maps on a Riemann surface ¥ with metric v with values in M which minimise the

action (or energy)
s@.1)= [ ol

S is invariant under conformal transformations of 3, i.e under diffeomorphisms of 3 which
multiply the metric v pointwise by a positive factor, namely diffeomorphisms f such that
there is a function h on ¥ with (f.y)(2) = €"(2)y(2). When X is Kihlerian, and « is the
Kahler form on X, the action reads

ﬂ¢wzéwv+éwww

where ¢*« is the pull-back of @ on ¥ by ¢. Furthermore, one can check that the critical
points of S which give the classical paths coincide with the critical points of the action

S<¢,v,ﬂ>z/zud¢u2+/z¢*ﬁ
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for any closed two form 6 on X. From these two remarks it follows that for a Kdhler manifold
(X, ¢) with K&hler form «, the classical 0 model can equally well be described in terms of

the action:
s@w= [ oot [ o0

where w = a 4+ ¢ is now a complexified Kéhler parameter, § being a closed 2-form. In
fact, the actual actual parameter is the class of 8 in H?(X,R)/2IIH?*(X,Z) since an exact
form contributes to the action only through a boundary term faz ¢*~y via Stokes formula and
physicists are only interested in the exponentiated action.

The action is invariant under conformal transformations of >.. These transformations are

generated by L, = z”aa—z.

A super-symmetric o-model is classicaly described by fields ® : ¥ — X where X is as
before a Riemannian manifold, and Y is a super Riemann surface, with one commuting
coordinate z and one anticommuting coordinate ¢ (as described in Alice Roger’s talk) which
minimise an action C(®) invariant under conformal transformations in a similar way to the
bosonic action S as well as one set of supersymmetries , corresponding to odd vector fields
on X. Alvarez-Gaumé and Freedman [AF] showed that if X is a Kdhler manifold there is
an additionnal set of supersymmetries, so that the theory has what is known as N = 2
superconformal symmetry; these symmetries are maintained under quantisation provided
that X is Calabi-Yau. Thus we have a mapping from the set of Calabi-Yau manifolds into
the set of N = 2 superconformal theories; this map was a key ingredient in the discovery of
mirror symmetry.

4.2. Quantisation and the Virasoro algebra

Given a classical field theory ¢ : V' — X (where V' is a given manifold) with action S(¢) =
Jiy L(¢, 0,0, - - - )dvol(z), the space of solutions of the classical Euler equations is equipped
with a Poisson structure. Noether’s theorem associates functions on the space of solutions to
infinitesimal symmetries of the action, in a compatible way with the Lie and Poisson brackets.
Infinitesimal symmetries then yield evolution equations using the brackets %qﬁ = {H, ¢}.
Quantising the classical model means finding a representation on a Hilbert space of states
of a set of functionals called observables equipped with the Poisson brackets. The quantised
theory can then be reconstructed from the correlation functions < fi(1)--- fi(zx) > where
;.0 =1,---,k are points on V and

S i) fulen) >= / Fu(21) - fi(d(a))e @ g

¢€Map(V7M)

The integral is to be interpreted here as a formal infinite dimensional ” Lebesgue integral” on
path space Map(V, M).

Coming back to the bosonic g-model ¢ : 3 — X, let us notice that since the action arises
in the "path integral” as an exponent, and since we have S(¢,v,w) = S(¢,7) + 7 fs, ¢*5,
B being a form in H?(X,R)/2rH*(X,Z), the correlation functions are independent of the
choice of representative # modulo 2xZ and are thus well-defined.

Quantisation of a conformal field theory should give a (possibly projective) representation
of the Virasoro algebra (that is, the algebra generated by L and L) and hence a theory
satisfying Segal’s axioms (described in [Gal).



Claire Voisin (written by Sylvie Paycha and Alice Rogers) 107

In a similar manner one expects quantisation of an N = 2 supersymmetric sigma model
to lead to an N = 2 conformal theory, that is, essentially a representation of the super
Virasoro algebra with central charge. This algebra has even generators L,,, L, m € Z (as
for the purely bosonic conformal group) and J,,,.J,, m € Z, together with odd generators
GHG;, G2, G r s € T+ % and an even central charge C'. Full details of this algebra are
given in [V] where it is also shown that there is an involution of this algebra defined by
G e Go, G« G .G« GF Jyn — —Jm, Jm = Jm. Under this involution two subrings
of the representation, known as the chiral-antichiral ring R., and the chiral-chiral ring R,
are interchanged. This interchange of rings is the next step in the physicist’s construction
of mirror symmetry; the final step involves reversal of the steps that lead from a Calabi-Yau
manifold to the (for example) chiral-chiral ring of the corresponding superconformal field
theory. The chiral-antichiral ring of one superconformal theory (derived from a Calabi-Yau
manifold X') is the chiral-chiral ring of a superconformal theory which can be realised by a
non-linear o- model on an different manifold X’, and the idea is that these two manifolds
will be a mirror pair. Now the relation with geometry is given by the description of the
(anti)chiral rings in terms of the Dolbeault cohomology of the target manifold of the o-model.
The relation with mirror symmetry comes from the fact that the rings R., and R.. have
bigradations R%;? and RE corresponding to eigenvalues of Jo and Jo, with REY =2 HY(APTx)
and R." = HY(APQx).

Witten suggests a more geometric interpretation, whereby mirror symmetry would ex-
change two supersymmetric quantum field models, a model A built from X and a model B
built from its mirror X’ thus exchanging special correlation functions called Yukawa couplings
computed for each of these models, which we shall denote by Y for the model A and Y’ for
the model B. As we shall see below, the (normalised) Yukawa coupling Y is an n-symmetric
form on H'(Tx) and Y’ is an n-symmetric form on H(Qx/).

5. Mirror Symmetry and Mathematics

The construction of the mirror pair of a Calabi-Yau manifold using superconformal field
theory is both indirect and (in places) tenuous. It is natural to ask whether there is not some
more direct and rigorous way of obtaining the mirror pair. At present no such method is
known, but considerable progress has been made towards this goal.

5.1. Mathematical evidence for mirror symmetry

Properties of Yukawa couplings give a hint towards mirror symmetry.

Let X be a Calabi-Yau manifold of dimension 3 such that h!'(X) = 0. For a given
k € H*°(X) where H*°(X) enters in the Hodge decomposition H*(X,C) = H*°(X) &
HY2(X) 3 H*YX) @ HY3(X) =, one defines a Yukawa coupling Y, on X as a symmetric
three form on H(Ty):

_ 2
Yﬁ(ul,u%u;g) =<K , Uy - Uy - U3 >

where < -, - > corresponds to Serre duality (see e.g [GH] chap.1), uy - ugy - uz € H?>(ATx)
where wuy - ug - ug denotes the cup-product [GH] of wy, ug, us.
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These Yukawa couplings have a remarkable property, namely that they arise as ”deriva-
tives” of a potential for a natural choice of coordinates on My . In other words, there is a spe-

cial choice for the parameter x and there are special coordinates 2y, - -+, 2y, N = dim H(Tx)
on My (depending on a choice of symplectic basis on H?(X,Z) for the intersection form)
and a function F(z,---, 2zn) such that (see [V] Proposition 3.3)
g 9 0 ok
Yi(

95 9% ) 9m0n0m

This construction also yields a flat structure (coordinates defined up to affine transformation)
on Mx which depends on the symplectic basis chosen on H*(X,C). (see Lemma 3.2 in [V]).

5.2. Predictions of mirror symmetry

Confronting these results with the results predicted by mirror symmetry gives evidence for
mirror symmetry.

Let X be as before a three dimensional Calabi-Yau manifold with A!(X) = 0. If mirror
symmetry exists, there is a local identification between deformations of complex structures
and deformations of the Kéahler parameter on its mirror X’. Since there is a canonical
flat structure on the Kéhler deformations of X’, mirror symmetry predicts the existence of
a flat structure on the space of deformations of the complex structures on X.

Let M be the mirror map; Y/ = M*(Y,) gives a cubic form on H!(Qy/) which depends
only on the Kihler parameter. One beautiful prediction due to the physicists (cf Witten) is
the description of Y’ in terms of cubic derivatives of the Gromov-Witten potential G- the
definition of which involves Gromov-Witten invariants of ¥,/ (see [A], [LY], [V]). Hence with
the privileged choice of coordinates on either side as described above, the mirror map M has
to be affine linear and one expects that M*F = G, I being the potential defined above for

Y, (in fact up to a quadratic function of the flat coordinates).

This identification predicts the number of rational curves in a quintic of any degree. Pre-
dictions have been checked up to degree 4 (see [ES], [LY]).

These are only a few hints for mirror symmetry. There have been many other investigations
made in that direction, such as Batyrev’s combinatorial construction of a beautiful series of
examples, for which we refer the reader to [V].
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Randomness is one of the paradigms of modern physics. During the last years a wide
variety of models of disordered statistical mechanics have been introduced and studied. By
disordered system we mean a system with quenched (frozen-in) randomness which vary from
sample to sample. For modelling randomness one can either introduce random pertubations
in an ordered system, or consider random interactions between the different components of
the system. In the case of perturbations, an important question to address is about the
stability of phase transitions under random perturbations. The case of random interactions
(spin glasses) is much more difficult and still heavily debated. We can however use a mean
field theory to study the behaviour of the system by neglecting the effects of fluctuations.
In many cases fluctuations are irrelevant: systems in sufficiently many spatial dimensions
or with long-range interactions (each component interacts with each other component). In
mathematical physics, mean field models are usually provided by systems defined on complete
graphs or trees.

In the following, we present a simple application of the theory of branching random walks to
the mean-field theory of a random systems defined on regular trees. In a tree of coordination
number d > 2, one can study mean field models of spin glasses or directed polymers using
the theory of branching random walks.

We can define a simple model on a d-tree (i.e. each vertex has d edges; for instance the
dyadic tree is a 2-tree) as following:

Let 7, be a finite d-tree. If v is a vertex, we denote by |v| the number of edges (or steps)
of the path going from the root to v. We have thus d" paths p of |[v| = n steps. On this
d-tree we can do simple random walks starting at the root and choose any of the d edges
coming out independently. Let w(3) be a random variable defined on the probability space
(Q, F, P), depending on a real variable 3 called temperature. We assume moreover that the
variable w(/3) has moments of all orders and that w™!(3) is almost surely bounded. To each
edge b € 7, we assign the random energy w;(3) having common distribution with w(3). We
have thus a family of independent identically distributed random variables {wy(3), b € T,}
indexed by the edges of the tree. In models of statistical physics, the variables {w;(5)}
are associated with the Boltzmann factors. In the case of random interactions between the
components of a system, each path p from the root to the vertex v, corresponds to a spin
configuration whose Gibbs weight is given by the sum of energies over the |v| edges. In the
case of directed polymers the energy of each walk is given by the product of the energies of
the visited edges.

“Work partially supported by the EU grant CHRX-CT93-0411
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Having this in mind, we can define on 7, the partition function of the models by

Za(8) =Y [T we(5),

p bEp

the specific free energy by

F(B) = n~" log Z,,(83).
Moreover, the Gibbs distributions can be defined by the following random measures

. Hbep wb(ﬁ)
Vnp(+) = T(m

The main object of interest is the behaviour of the previous quantities at the macroscopic,
or thermodynamic, (n — oo) limit as function of §. In order to study this behaviour we
can express the previous defined thermodynamic quantities as random measures. Remarking
that the d-adic partition of the unit interval corresponds to the d-tree, we can define and
study random measures on the unit interval which are related to Z,(3) and v, s.

In many cases, there exists a value of 3, called critical temperature, 3., such that for
B < fBe:

e 7,(8) goes to a non zero limit as n — oo;

e the limit

Fo(B) = 1i_>m n"tlog Zn ()

exists almost surely and is given by n=!log FZ,(3) (F(-) means the expectation). This
result gives the existence and the so-called self-averaging property of the free energy,
i.e., the coincidence of the annealed
.1
nh_}n(r)lo Elog EZ.(5)

and quenched limits

1
lim —Flog Z,(5);

n—oo N

e v(n, ) has a unique (weak) limit v(-), as n — oo.

On the other hand, for 5 > 3. we have
o Z,(B) goes to zero as n — 00;

e the limit F(8)s = lim, o, n~1log Z,(3), exists almost surely and it is a non random
quantity. Using large deviation techniques we can explicitely calculate this limit;

e in general, there are many limits of v, g(+).

The phenomenon of phase transition is expressed by the previous setting. The region
of B < . is called the high temperature region and § > (. defines the low temperature
region. This simple model provides a general framework for all mean field models studied
by physicists and gives some insight to our understanding of phases transitions in random
systems. The interest reader can found the detailed definitions and proofs in “The mean field
theory of directed polymers in random media and spin glass models 7, Rev. Math. Phys. 7,
183-192, (1995).
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1. Introduction

Moduli spaces have been one of the themes of this meeting; in this paper my aim is to show
how moduli spaces may be used in the functional integration approach to the quantisation of
systems with symmetry, with particular reference to the super moduli space of super Riemann
surfaces and the spinning string. At the outset it should be made clear that the term ‘super’
implies an extension of some standard object to include anticommuting elements in some
sense, the term deriving its name from the notion of supersymmetry in physics.

The Feynman path integral was initially developed as a method for determining the time
evolution of a quantum system; for some systems the path integral formulation may be
derived rigorously from canonical quantisation. A generic feature of this approach, even
when extended either rigorously or heuristically to quantum field theory (in which case path
integrals become functional integrals) is the emergence of the term exp(—uS5) (where S is the
action of the theory), so that covariance, absent in the canonical approach, is restored in the
path integral. This suggests that the path integral may be a more fundamental starting point
than the canonical approach; and such integrals are widely used to define the quantisation of
a theory when there is no direct derivation of the functional integral by canonical methods.
There remain many features of functional integrals which are not well understood, but formal
manipulations have led to remarkable insights in both mathematics and physics, so that the
pursuit of a proper understanding of these integrals seems highly desirable.

In this paper the basic idea of the Feynman path integral in quantum mechanics is de-
scribed, and a very heuristic description given of the extension of these idea to functional
integrals in quantum field theory, and the modification needed when a system has a gauge
symmetry. In Section 9 these ideas are applied to the bosonic string, and it is shown that the
functional integral reduces to an integral over the moduli spaces of Riemann surfaces. In the
final section we see that the spinning string leads to an integral over a super moduli space.

2. The Feynman path integral in quantum mechanics

In quantum mechanics a key equation is the Schrédinger equation
af
ot

which determines the time evolution of the wave function f of a system whose Hamiltonian

is H. (The Hamiltonian is a sef-adjoint operator on the Hilbert space H of wave functions.)

——illf 1)
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For the case of a single particle of unit mass moving in one dimension under a field of force
derived from a potential V' (), wave functions are square integrable functions on the real line
(with differentiable dependence on time as well) and the Hamiltonian takes the form

H=H,—V(x) (2)

where Hy = —%%. The system is solved if the operator exp(—iHt) is known, since this
leads to solutions of the Schrédinger equation (1). It is sufficient to determine the kernel of

this operator, that is, the function exp(—iHt)(qr, ) which satisfies

exp(—ilt) f(qr) = / dq exp(—iH1)(q, ar) F(q). (3)

(Here we are being vague about analytic details, and cheerfully assuming kernels exist; this of
course depends on the nature of V'; all the analytic questions become much more tractable if
one considers exp(—Ht). A good entry point to the literature on these matters is [1].) Since
exp(—iHt)exp(—iHs) = exp(—iH (s+1)), the kernels of these three operators are related by
the involution

exp(—iH (s +))(q1, qr) Z/dq exp(—iH s)(qr, ) exp(—iH)(¢, qF)- (4)

The trick required to derive the path integral expression for the kernel of exp(—iHt) is to
use the fact that

exp(~illt) = (exp<—%>)N ~ (exp<—”fv?>t>)N (exp<—”fvot>)N )

for large N. Then the involution (4) repeated N — 1 times gives

N-1 N
exp(—1Ht)(qr, qr) :/ H dquexp(—iHAt)(qi_l,qi) (6)
=1 =1
where At = %, go = qr and gy = g, and thus, if N is sufficiently large,
N-1 N
exp(—iHt)(qr, qr) =~ / T da: [T exp(=iV (@) At) (exp(—iHoAt) (gi-1, 4:)
=1 =1
T T i(gi = gi-1)?
dg; 3 AL RS S kP
x /21:[1 q Eexp( V() )exp( SAL )
N-1 N G — g\ 2
— dg; ; —V(g)At+ | =L ) At
[ oo | 2o (552)

[N

¢
= [ raen (i [ CViaen + o)) 7)
0
where Dq denotes that the integral is to be taken over all paths ¢(s) satisfying ¢(0) = ¢
and ¢(t) = qr. The expression in the final line is essentially defined by the line above. (The
argument presented here roughly follows the ground-breaking work of Feynman and Hibbs

[2])
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The final expression has the classic form

/Dq exp —iS(q(-))

where S = fg (1(d(s))> = V(q(s)) ds is the action of the system. As mentioned before,
physicists proceed to quantise a vast range of systems by investigating this integral for the
appropriate action. For instance, in quantum field theory, where instead of a single configu-
ration variable ¢(¢) there is one for each point x in space, the integrals become sums over all
functions (or fields) ¢(x, ) on spacetime, and the path integral is written

/Dqﬁexp —iS(o(+, ) (8)

where S(¢(-,-)) denotes the action of the system.

When the system has a symmetry, that is, some group G acts on the space of fields in
such a way that the action S(¢(-,-) is invariant, the functional integral is taken of the space
of fields modulo the action of the group . This space is in general smaller than the full
space of functions, but may be more complicated. However in the case of some very highly
symmetric theories, particularly string theories and topological field theories, the space is
finite-dimensional, and has an interesting geometrical interpretation.

3. The moduli space for string path integrals

The first example I shall consider of a theory where the function space is reduced to a finite-
dimensional moduli space is closed bosonic string theory, following the approach of Polyakov
[3], which is explained together with many mathematical developments by Bost [4]. In this
case the classical action is

S(g(), X () = /E @0 \Jdet gi; (2)g" ()0 X°0; X e 9)

where ¥ is a 2-dimensional surface, g;; are the components of a Riemannian metric g on
¥, X is a mapping of 3 into R? (a consistent quantum theory being obtained when d, the
dimension of the space-time R? in which the string moves, is equal to 26), and 7, is the
Minkowski metric in R% To quantise the theory the functional integral

/DXDg exp(—itS(X(+),¢9(+))

must be evaluated over the space of all fields X, g, modulo the symmetries of the theory. It
is sufficient to consider only ¥ which are compact surfaces without boundary, summing the
results for each possible genus. The action of the theory is symmetric both under the action of
the diffeomorphism group of the surface > and under conformal transformations g — e?@g,
It is possible to carry out the X integration explicitly, since this integral is a Gaussian, so
that it remains to integrate a function of the metric g over the space of all possible ¢ modulo
the symmetries. It turns out that this space is simply the moduli space of all possible
complex structures on . To see this, suppose that g has components g;; with respect to
local coordinates x',i = 1,2 on ¥; then it is always possible to choose a diffeomorphism (and
hence new local coordinates y', i = 1, 2) on ¥ such that the new components have the form
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gi; = e(b(x)(sij. Suppose that 7!, 7% are some other coordinates where the components of ¢ are
also diagonal, and that z and 2 are defined as z = y' +iy?%, 2 = §' + i§%. Then (by standard
arguments in complex function theory) z is an analytic function of 2. Thus each conformal
and diffeomorphism class of metrics determines a complex structure on X, and the space over
which the functional integral for the closed bosonic string must be carried out is the moduli
space of complex structures on the surface X. This space has been much studied, and is a
finite-dimensional manifold with singularities. In the next section it will be seen that the
analogous space for the spinning string is a super moduli space.

4. Super moduli space and the spinning string

To incorporate fermions (that is, particles with half integral spin) into string theory, the
spinning string is introduced. The geometric theory of the spinning string can be formu-
lated using anticommuting variables, as first described by Howe [5]. The ingredients are
complicated but have become standard in supergravity theory. They involve the notion of
supermanifold, which can be defined in a bewildering number of different ways; however a
quite naive approach is sufficient for this lecture. The action of the spinning string is

S(Fiy) = i/ d*x d*0 superdet (E3y) D,V DV (10)

b
where 2!, 22 are even commuting coordinates and #', 6% are odd anticommuting coordinates
on the (2,2)-dimensional supermanifold ¥, F3} is a generalisation of a metric on ¥ (described

below), V' is a function on ¥ and D, is a differential operator whose precise definition is not
important here.

The object Eﬁ is known as a vielbein and generalises the zweibein version of a metric: on
a standard 2-dimensional manifold a metric is a symmetric non-degenerate quadratic form on
the tangent space; thus there exist orthonormal bases e,,a = 1,2 of the tangent space; such
a basis is not unique, there is an SO(2) bundle of orthonormal frames. This bundle contains
all the data of the metric. With respect to local coordinates the dual basis e® of one-forms
may be expanded as

a __ _a m
e’ = e da™. (11)
A basis e', e? is known as a zweibein.

Returning to the supermanifold, we consider a reduction of the frame bundle (which is in
fact a super group bundle) to an SO(2) bundle, with action on the preferred frames taking

the form
(i) =05 5)(5) w

where F, and F, are respectively the two odd and two even elements of the preferred basis
of the tangent space, and R is an element of SO(2). The allowed vielbein are constrained so
that the bundle omits a connection with some components of the torsion taking a prescribed
form. (This is a physical requirement.)

Expanding the dual basis F?%, F* of the cotangent space in terms of the coordinate basis
x™, 0% we have 16 components of the vielbein forming an invertible matrix

(5 )
Eu By



Alice Rogers 117

A B

C D
of this nature is defined to be det(A — BD™!'C)(det D)~!. (It is a non-trivial property of the
superdeterminant that it obeys the multiplicative rule.)

The superdeterminant of a matrix

The final geometrical ingredient needed is a notion of integration; this is defined by
/d% P8 (f(2) + f1(2)8" + fa(2)0? + fralx)816%) = /d% Fiala). (13)

The super conformal geometry emerges from the symmetries of the theory; these are
superdiffeomorphisms of X, together with so-called super Weyl transformations [5]
1
Ez  Eg AE; ATES - JAT2EL Y DsA
BioEL )T\ Apr abEr - ia-bEnetpa
n B2 ula 5
(Here 755 are the Dirac y-matrices which represent the 2-dimensional Clifford algebra asso-
ciated with spin representations of SO(2).)

These are the simplest transformations which preserve the constraints on the connection
without restricting the parameter A(z, 8), except by requiring that it is invertible everywhere.
The superdifeomorphism symmetry is used to choose a coordinate system where the vielbein
is ‘super-Weyl flat’, that is, obtainable from the matrix

50
( 0, o ) (14)

by a super Weyl transformation. If one now chooses complex coordinates z, ¢ with z = alia?
and ¢ = 0'+16? then changes of coordinates (z, () + (%, () which preserve super Weyl flatness
of the vielbein are what is known as superconformal: Z and ( are both superanalytic functions

of z and ¢ [6], (so that
f(2) +¢o(2)
= ¥(z)+¢y(2) (15)

with all four functions f(z), ¢(z),¥(2), ¢(z) analytic) and also the differential operator D =
8% + Caa—z transforms mutiplicatively with

IS 3
|

I

D = (D) D. (16)

The nature of the transition functions from z, ¢ to %, demonstrates that the surface ¥ has
the structure of a particular kind of (1, 1)-dimensional complex supermanifold known as a
super Riemann surface.(The extra condition (16) means that the change of coordinates takes
the form

2 o= f2)+¢0(2)

¢ = UE) )+ ()Y (2). (17)

For future reference, it may be observed that by setting ¢ (z) to zero and ignoring ¢ a con-
ventional Riemann surface, known as the body of the super Riemann surface, is obtained.
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A super Riemann surface with simply connected body is said to be simply connected, and
similarly for any other topological attribute.)

From the analysis above we see that the functional integral for the spinning string (equation
(10)) reduces to an integral over the super moduli space of all possible super Riemann surfaces,
and so one is led to a study of the nature of this space. Following Crane and Rabin [7], the
following picture emerges: three simply-connected super Riemann surfaces can be found
which are super extensions of the three simply connected Riemann surfaces, and then a
uniformisation theorem established to show that any other compact super Riemann surface
without boundary is a quotient of one of these three simply connected super Riemann surfaces
by a discrete subgroup of the superconformal automorphism group. The starting point is the
observation that corresponding to any Riemann surface with spin structure a super Riemann
surface can be constructed with transition functions

f(z)
Vv (=), (18)

where fis the transition function on the Riemann surface and the sign of 1/ f/(2) is determined
by the spin structure. Since each of the three simply connected Riemann surfaces (the complex
plane C, the complex sphere C, and the upper half plane U) has a unique spin structure, they
each possess exactly one super extension of this nature, denoted SC, SC, and SU respectively.
Crane and Rabin [7] use cohomological arguments to show that these are the only simply
connected super Riemann surfaces, and hence establish their uniformisation theorem. The
moduli space corresponding to each genus and spin structure can then be investigated. At
genus 0, the only possible super Riemann surface is SC,., while at genus 1 various toroidal
compactifications are possible; for even spin structures on the body, these compactifications
are parametrised by a single even parameter for even spin structures, so that the moduli
space is (1,0)-dimensional, while for the odd spin structure the moduli space has dimension
(1,1). Super Riemann surfaces of higher genus are obtainable as quotients of SU by a discrete
subgroup I' of the group of conformal automorphisms of the upper half plane which consists
of transformations of the standard form (17) with [7]

IS 3
|

I
|

az+b
fz) = ot d
B vz 4§

¢(Z) - CZ—|—d (19)

where a,b,c and d are all real and even and satisfy ad — be = 1 while v and ¢ are real and
odd. Now by the usual arguments, I' must be isomorphic to the fundamental group of a
surface of genus ¢, where ¢ is the genus of the body of the super Riemann surface SU/T,
and this group has 2¢ generators and one relation; thus, allowing for a freedom of overall
conjugation, there will be 3(2¢g—2) even parameters to be chosen and 2(2¢g—2) odd parameters
to be chosen to determine a particular I'. Thus supermoduli space is (at least to the extent
that the corresponding result is true for standard Riemann surfaces) a finite-dimensional
supermanifold, and we see that the geometrical formulation of the spinning string given by
Howe [5] leads eventually to the reduction of the functional integral for the spinning string to
a finite-dimensional integral. A further account of the geometry of super Riemann surfaces
and its application to string theory may be found, for example, in [8, 9].
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1. Introduction

One of the challenges modern theoretical physics has put to classical mathematics is the
necessity of finding a satisfactory concept of manifold or point set which will accomodate the
increasingly varied requirements. Supersymmetry necessitated the introduction of superman-
ifolds. String theories and field theories in general require the infinite dimensional manifolds
of smooth maps. The geometric interpretation of non-commutative geometry is still puzzling.

The purpose of this paper is to introduce the universal measuring coaglebra and to suggest
that many of these challenges can be met by this construction. It provides a solution to
problems of differential topology in supermanifolds and the spaces of maps. There is evidence
that it may give a satisfactory interpretation of quantum groups and similar objects. Moreover
as its construction is a universal one requiring only that the input objects are algebras it ought
to have applications to other categories which depend on a notion of function algebra. Finally,
because of the strong built in finiteness properties possessed by coalgebras, this construction
in some sense encodes all finite dimensional information.

I will introduce measuring coalgebras, describe how they function as surrogate point sets,
and how they can be used to get jet bundle information, in both the classical case of finite
dimensional manifolds, and the case of graded manifolds. A further slight generalization
allows one to get hold of the jet bundle of the manifold of smooth maps between (ordinary
or graded) manifolds. The final example | will give is the simplest one which demonstrates
the possibility of representing quantum groups as “transformation groups”.

2. Definitions of Coalgebras

Motivation Every point set S comes equipped with a diagonal map .S — S x S taking a
point s to the pair (s, s). This map is used implicitly in the usual definition of multiplication
of functions on S: if f, g are two (say real valued) functions on S the product fg is defined
by

This definition depends evidently on multiplication in R, but equally on the diagonal map
s — (s,5).
The view I take is that the properties which define the notion of point are the following:

121
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1. Points take values on functions; that is, they are linear functionals on a (given) algebra
F of functions.

2. Points are precisely those functionals s which satisfy the product rule
fa(s) = f(s)g(s).
determined by multiplication in R and the usual diagonal map.

This is a viewpoint which generalizes easily, coalgebras providing sets equipped with gen-
eralizations of the diagonal map, and measuring maps providing the idea of a product rule.

Definition A coalgebra is a linear space C together with a comultiplication
A:C—CaC

and a counit

e:C —R
satisfying the following identities.
c 25 coac c 25 caec
Al lA@l Al ls@l
coc 225 cocac coc 12 C

Examples
i C=Rm, Am =m® m, em = 1. This is the coalgebra with point-like behaviour.

O =Rm+Rt, Am=m@m,em = 1, At =t@m+m®®t, ¢t = 0. Observe that
comultiplication of t resembles the product rule for derivations. Elements with that
comultiplication are called primitive.

iii ¢ = Rk+ Rh+ RE. The elements h, k are pointlike (as m in example i), and AE =
k@ F+ F®h,cF =0. This coalgebra is the one which arises in quantum groups.

Notation Following Sweedler, the comultiplication Ac will be written

Ae=) e @)
©

The coassociativity diagram allows us to write

(A (039 1)AC = ZC(l) (039 (2) (039 C(3) = (1 (039 A)AC.
(o)

The counit diagram above states that

c=Y elew)e@ = Y cuEle):
@ @

Pleasing property of coalgebras The defining property of tensor products makes it
easy to construct maps from tensor products not to them. The consequence of requiring the
comultiplication map to go “the wrong way” is that coalgebras have a very strong built in
finiteness property: every element in a coalgebra C' lives in a finite dimensional subcoalgebra
of C'. This has a number of desirable consequences on which we can capitalize.
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3. Measuring coalgebras

This is the concept of maps between algebras which satisfy a product rule.
Definition Let A, B be algebras (over R for example) and let C' be a coalgebra. A linear
map

U :(C — Homg(A, B)

is said to measure if W(c)(araz) =3 ) V(ca))(a)¥(c)(az) and ¥(c)(14) =£(c)1p.

Examples

i If C is the coalgebra of example i above, then a linear map ¥ : C' — Homp (A, B) measures
if and only if ¥(m) is an algebra homomorphism.

ii If C' is the coalgebra of example ii above, a linear map ¥ : C' — Hompg(A4, B) measures if
and only if W(m) is an algebra homomorphism, and W(¢) is a derivation with respect

to W(m).

Not only are there familiar examples, then, of measuring coalgebras, but also there exists
a “maximal” measuring coalgebra for a given pair (A, B) of algebras.

Definition A measuring coalgebra 7 : P — Hom(A, B) is a universal measuring coalgebra
if given any other measuring coalgebra ¥ : C' — Hom(A, B) there is a unique map (of
coalgebras) p which makes the following diagram commute.

P —"— Hom(A, B)

4

C

The existence of universal measuring coalgebras depends on the pleasing property of coal-
gebras. Specifically, that finiteness property guarantees that in the category of coalgebras,
coproducts and colimits exist. This is enough to construct a suitable measuring coalgebra P
with the required properties. Such objects are unique by general categorical principles.

Notation The universal measuring algebra for the pair (A, B) will be denoted P(A, B).

4. Applications to manifolds and graded manifolds

The starting point for this discussion has been that a point set S is a subset of linear func-
tionals on a (given) function algebra F. The idea then is to replace S by P(F,R). As a
test piece we can calculate P(C'™ (M), R) where M is a smooth manifold and C'*°(M) is the
algebra of smooth functions on M.

We know some elements of P(C*(M),R) already. If m is a point in M, then the as-
signment f — f(m) is an algebra homomorphism. Thus by example i above, Rm —
Hom(C*° (M), R) measures, and by the universal property of P(C*°(M),R), Rm is included
in P(C*(M),R). Denote the image of Rm under this inclusion by 7.

Similarly, if v is a tangent vector to M at m, so that + is in the tangent space T, M, the
assignment ¢ — v determines a measuring map from Rm + Rt - Hom(C*(M),R). In this
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way R, + T}, M can be considered as a measuring coalgebra for (C*(M),R). Denote the
image of this measuring coalgebra in P(C*(M),R) by T}}.

Higher order tangent spaces can be treated similarly and give an increasing union of
subcoalgebras T% of P(C°°(M),R) as in Figure 1.

Figure 1:

Result

FEach subcoalgebra TF is dual to the fibre of the &M jet bundle of M at m The sum over
points in m is direct.

Thus in the familiar case of smooth manifolds, this entirely algebraic construction recovers
all the jet bundle information of the manifold M. It is therefore an attractive candidate to
use to recover jet bundle information when conventional manifold techniques fail to apply. A
first application is to graded manifolds.

Graded manifolds are manifolds whose function algebra includes anticommuting elements,
that is, functions f, ¢ such that fg = —¢gf. They are defined as follows.

Definition A graded manifold is a pair (M, A) where M is an ordinary smooth manifold,
and A is a sheaf of graded commutative algebras such that there is an atlas of open charts on
M such that over such an open set the sheaf A is isomorphic to the sheaf C'°°(.) @ AR™. The
basis {#,...,0,} of R™ which generates AR™ are refered to as the odd coordinate functions
on (M, A).

By analogy with the previous example the universal measuring coalgebra P(A(M),R)
ought to provide a picture of the (dual to) the jet bundle for the graded manifold (M, A). It

does. The only novelty is that in addition to conventional tangent vectors %7 corresponding
to conventional coordinate functions on M, T} contains odd tangent vectors % correspond-
ing to the odd coordinate functions. The higher order tangent spaces contain suitable mixed
derivatives of odd and ordinary coordinates. The result and the picture are still the same.
The only novelty is that each T/ comes with a Z, grading, TF = TT’;@ + TT’;J, and contains
derivatives of both odd and even coordinates. (See Figure 2).
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Result

P(AR)= Y Tk

meM k

This idea was exploited extensively by Kostant in his work on graded manifolds.

Figure 2:

5. Applications to the manifold of maps between manifolds

Let M and X be manifolds. It would seem that the above recipe for obtaining jet bundle
information about the manifold M (X, M) of smooth maps from X to M would be a very un-
promising one: to start with M (X, M), form C*(M (X, M)), and then P(C*(M (X, M)),R)
is not an attractive task. Nonetheless, measuring coalgebras do provide simple and easy access

to the jet bundle of M (X, M) through the following trick.

There are two key observations.
1. If *is a point, then R = C'* ().
2. M = M(x, M).
Thus, since the recipe
P(CT(M),R) = P(C™(M), €™ (%)) — Hom(C™ (M), C™(x))

gives a satisfactory account of jet bundle information for M = M (%, M), it is reasonable to

postulate
P(C(M),C* (X)) — Hom(C*(M),C*(X))

as a candidate for the dual jet bundle of M (X, M). In fact, if one defines the cocommutative
part P.(C(M),C*(X)) of P(C(M),C*(X)),

PC™(M),C™(X)) = {p € P(C™(M),C™(X)): > pa)@pe)=Y_ P O Ppa}
(p) (p)



126 Marjorie Batchelor

then P.(C*™(M),C*(X)) does very well as a candidate for the dual jet bundle in that
the picture is exactly the same as in the case of ordinary manifolds, and it contains most
constructions reasonably expected to be elements of the dual jet bundle.

Result

ilfo: X — M is a smooth map then Ro is a subcoalgebra of P.(C*(M),C*(X)).

ii If p: TM — M is the tangent manifold of M with its projection onto M, let 7 : X — TM
be a smooth map with pr = ¢. Then if R, 4+ R is the coalgebra of example ii, with o
point-like and 7 primitive, R,+R is a measuring subcoalgebra of P.(C*(M),C*(X)).
(See Figure 3 ).

iii

P.(C*(M),C*®(X)) = > Utk

o: X —M smooth

Here T? = R,, and T! is the set of all derivations from C°(M) to C°°(X) with respect
to o: that is all linear functionals 7 satisfying

T(fg) =71([)olg) +o(f)T(9).

By inspecting the effect of composing 7 with the evaluation at a point x in X, it can
be seen that all such 7 are maps from X to 7'M such that o = 7. (See Figure 4).

Figure 3:

Property iii is a consequence of the fact that P.(C*(M),C*(X)) is a cocommutative
coalgebra all of whose simple subcoalgebras are pointlike. For a long time the attractive
possibilities of including the not necessarily cocommutative parts of P(C* (M), C*(X)) were
neglected. However, using the non cocommutative bits gives hope of representing quantum
groups as “genuine” transformation groups. This brings the story up to my current interests.
I will finish by giving one example of the type of non cocommutative measuring coalgebra
which may be useful in representing quantum groups and related objects.
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Figure 4:

6. A non cocommutative measuring coalgebra

Let A = B = R[z], the polynomial algebra over C on one generator. Let C' be the coalgebra
C =RE+ R+ Ry, of example iii in the first section.

Define a linear map w : C' = Hom(R[z],R[z]) by setting

In order for w to be a measuring map it must be that wh and wk are algebra homomorphisms,
so that

wh(z")=0,n>0, wh(l)=1, wk(z")=2"forall n.
Moreover inductively it can be shown that
wE(")=2"n>0, wk(1)=0.

It is curious that the absence of the coefficient one normally expects of differentiation re-
sults in the assymetry in the product rule (the measuring condition). However, the behaviour
is typical of difference operators, as opposed to differential operators, and there are many
variants.

It is also curious that the algebraic properties which enable such difference operators to
exist in this case are

i) The image of wk — wh is the ideal of R[z] generated by the single generator z, and
ii) any element of R[z]z can be written uniquely in the form p(z)z.
The interrelations between conformal field theories, loop algebras and quantum groups

are an intriquing field of study. It is my belief that the algebraic properties above are at the
root of the connection between quantum groups and conformal field theories.



128 Marjorie Batchelor

References

[1] Batchelor, M. Measuring coalgebras, quantum group-like objects, and non-commutative ge-
ometry. In Differential Geometric Methods in Theoretical Physics, C. Bartocci, U. Bruzzo,
R. Cianci (eds). Springer Lecture Notes in Physics 375, 1990.

[2] Batchelor, M. In search of the graded manifold of maps between graded manifolds. In Com-
plex Differential Geometry and Supermanifolds in Strings and Fields, P.J.M. Bongaarts and
R. Martini (eds), Springer Lecture Notes in Physics 311, 1988.

[3] Exton, H. g-Hypergeometric Functions and Applications. Ellis Horwood, 1983.

[4] Kostant, B. Graded Manifolds, Graded Lie Groups and Prequantisation. Springer Lecture
Notes in Maths. 570. 1975.

[6] Lusztig, G. Quantum deformations of certain simple modules over enveloping algebras.
Advances in Math.

[6] Sweedler, M. Hopf Algebras. Benjamin 1969.



Moduli Spaces

An Interdisciplinary Workshop organized by Sylvie Paycha

This session was of an experimental nature; three short twenty minutes talks were to
be given on the topic of moduli spaces in relation to the different topics of the sessions of
the conference, namely one by Caroline Series (given by Tan Lei since Caroline Series was
unable to attend the conference) on moduli spaces and dynamical systems, one by Rosa Maria
Mir6-Roig on moduli spaces and classification problems in algebraic geometry, one by Sylvie
Paycha on moduli spaces and quantum field theory. Laura Fainsilber spontaneously gave a
talk on moduli spaces and number theory of which she kindly gave a brief account for these
proceedings.

This interdisciplinary session on moduli space came out to be a success; it lead to lively
discussions and even to a spontaneous talk (mentioned above). It was followed by a discus-
sion session on moduli spaces where we tried to understand better the different points of
views on moduli spaces presented in the different talks. There was clearly a need for such
interdisciplinary discussions within this EWM conference in Madrid and we hope that further
interdisciplinary sessions will be organised in the future!

Sylvie Paycha
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1. Introduction

To understand moduli we first have to understand the meaning of a complex structure on a
surface. A Riemann Surface is a surface (i.e. a 2-manifold) S with local charts to C such that
the overlap maps between charts are complex analytic. Remember that a complex analytic
map locally preserves angles and expands or contracts distances. In fact, using Taylor series
you see that locally it looks like

s fla) + F(a)(z — a).

In other words, it is just an affine map z — ¢z + d for some ¢, d. This map is a combination
of a translation, rotation and similarity. A map like this which preserves angles is called
conformal. (See Sylvie Paycha’s paper). In fact a map of a subset of C is conformal if and
only if it is complex analytic. Two surfaces S; and S5 are said to be conformally equivalent
if there is a homeomorphism f : 57 — S5 such that the maps f induces between charts are
complex analytic (equivalently conformal). We can thus talk about the conformal or complex
structure of a surface.

2. The problem of moduli

The problem of moduli is to describe the different conformal (or complex) structures there
can be on a fixed topological surface.

Facts (which we are not going to prove.)

The complex structure of a surface of genus g can be described by 3¢ — 3 complex parameters
(equivalently by 6g — 6 real parameters). The set of all possible moduli can be given, roughly
speaking, the structure of a 3¢ — 3 dimensional complex manifold.

Note

There is often confusion between Teichmiiller space and Moduli space. Both classify the
possible complex structures on a surface. You get Teichmiiller space when you fix what
is called a marking on the surface. This means that on each of the two surfaces to be
compared you specify that certain curves are generators of the fundamental group. When
you are matching the two surfaces your homeomorphism is required to carry one set of marked
generators into the equivalent set on the other surface. You get Moduli space when you ignore
the marking and only ask for a homeomorphism between the surfaces, not worrying about
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what it does to the generating curves. Moduli space is a quotient of Teichmiiller space by
the action of the Mapping Class Group. This is the group of diffeomorphisms of the surface,
modulo diffeomorphisms isotopic to the identity.

3. Two first examples

The first step in classifying conformal structures is the well known but still remarkable Rie-
mann Mapping Theorem, first proved fully by Osgood in 1900. It states:

Any simply connected open subset U C C which has at least 2 points in its boundary is
conformally equivalent to the unit disc D= {z € C: |z] < 1}.

In other words there is an analytic bijection between U and D. (The inverse of an analytic
map is automatically analytic.) Recently Sullivan and Rodin gave a very interesting and
more constructive proof of this theorem which allow one, given the region U, to implement
the map easily by computer.

The next simplest regions to classify are annuli. By definition, a (conformal) annulus is a
bounded open subset of C whose complement has 2 connected components. By methods
similar to those used in the Riemann mapping theorem it is proved (by Koebe)that any
conformal annulus can be mapped by an analytic bijection to the region

{zeC:1/r <|z| < 1} for some r > 1 (r might be infinity).

Thus to solve the problem of moduli for annuli, we only have to determine when there is
a conformal map between two of these standard regions.

Theorem 1 If r # s, there is no complex analytic bijection between the regions {z € C :
I/r<|zl <1} and {z€C:1/s<|z| <1} .

Proof
Suppose f were such a map. We may assume |f(z)| — 1 as |z| — 1. Let

g(z) =logrlog f(z) — logslog z

Then h(z) = Reg(z) is harmonic and vanishes on the circles |z| = 1, |z| = 1/r. By the
maximum principle, h = 0. Therefore ¢ is also constant (by the Cauchy Riemann equations).
However, if we make a circuit round |z| = 1/r , g changes by

illogr - 27 —log s - 27].
Since g is constant the change is 0 and hence r = s.

The real number logr > 0 associated to an annulus by this result is therefore unique and
is called the modulus of the annulus. It completely specifies the annulus up to conformal
homeomorphisms. The moduli space {logr € R :r > 1} = ]0, 00] does not quite fit into our
picture of moduli space being a complex variety because an annulus is not a closed surface,
neverthless it gives us a feel for what moduli are like.
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4. Quasi-conformal maps

A very important idea in complex dynamics is the idea of a quasi-conformal map. This is a
map which is not conformal but which stretches and shrinks with “bounded distortion”. It is
easy to write down a simple quasi-conformal map between annuli of different moduli — just
map the annuli to their standard position and then stretch the smaller one evenly along radii
to fit onto the larger. It is a fundamental theorem of Teichmiiller that for any map between
two surfaces, there is always a homotopic map of “least stretch” and that the surface can
be divided into rectangles or annuli on each of which the map acts like one of these simple
stretches.

5. The general case

The key to solving the moduli problem for a general topological surface is the famous Uni-
Jormisation Theorem proved by Koebe in 1907. It states that any simply connected Riemann
surface is conformally equivalent to exactly one of C, CU oo, D.

We can use it to classify all Riemann surfaces by the following two facts, which are not hard
to prove from the definitions:

1. The universal covering space of a Riemann surface has a complex structure and is again
a Riemann surface.

2. The covering maps are complex analytic homeomorphisms.

Thus we have only to list all the possible covering maps in the three cases to find all possi-
bilities. A covering map must be a fixed point free analytic homeomorphism of the universal
cover onto itself. In the case of C U oo there are no suitable analytic homeomorphisms be-
cause all of them have fixed points. In case of D the maps are exactly the linear fractional
transformations which map the unit disc to itself without fixed point in the disc. These are
the same as the isometries of 2-dimensional hyperbolic geometry. Thus it is possible to put
a hyperbolic metric on the quotient surface and measure the moduli in terms of hyperbolic
geometry measurements. This works whenever the surface we want has genus > 2. If we had
a bit more time we could explain exactly what the 6g — 6 real measurements for a surface
of genus g are. Finally in case of C the only fixed point free conformal homeomorphisms
of C to itself are translations z — z + b, where b is complex. The most interesting case is
when the covering group is Z?* and the quotient C/Z? is a torus. After scaling, translating
and rotating (which are all analytic homeomorphisms) we can assume that the group G of
covering transformations is generated by z +— z+ 1 and z — z + 7 for some complex T with
Im7 > 0. We have to find out when there is an analytic homeomorphism between two tori
C/G, and C/G,. Suppose f were such a map. Let f be the lift of f to C. Then f must be
periodic relative to the lattice points m + n7,m,n € Z. It is not hard to show that the only
possibilty is that f maps the lattice points m + n7,m,n € Z to the points g + ro,q,r € Z
and hence that 7 = Zg_‘l'_'s for some integers a, b, ¢, d with ad — bc = 1. This gives us the well
known picture that the moduli space for tori is the upper half plane (the 7 plane ) quotiented
by the action of the group SL(2,Z). (See Rosa Maria Mir6 Roig’s paper).

A good reference for this material is G. Jones and D. Singerman, Complex functions, Cam-
bridge University Press, 1987.
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6. Moduli in complex dynamics

How do moduli arise in complex dynamics? In complex dynamics one is studying a rational
function f mapping the Riemann sphere CU oo to itself . The Riemann sphere divides into
the Julia set, on which the grand orbits of f are dense, and the Fatou set, on which the
grand orbits are either discrete (in attracting or parabolic basins) or leaves of dynamically
defined foliations (in Siegel discs, Herman rings and superattracting basins). Pick a connected
component € of the Fatou set on which the action of the map is discrete. It makes sense to
form the quotient Qy/f . This is the orbit space in which all points in the same f orbit are
identified. Because the map was acting discretely, the quotient is a Riemann sufrace, usually
with some branch points. A lot of use has been made of the idea that we can relate different
rational maps by deforming these quotient surfaces by using quasi-conformal maps. We can
also investigate the space of all maps f with a given combinatorial structure by looking
at the moduli spaces of the quotients. Sullivan proved a very fundamental theorem, the
non-wandering domain theorem, by using the fact that the moduli spaces for each quotient
are finite dimensional. In my own work the rational map f is replaced by a group I' of
linear fractional transformations. Looking at where the group orbits are discrete or not, the
Riemann sphere still splits into a “Julia set” and a “Fatou set”. The quotients Qy/I" are
Riemann surfaces. We are interested in studying the relation between the moduli of the
surface and the complex parameters which go into defining the generators of the group. This
gives some very interesting and concrete pictures of Teichmiiller space.

7. An application to complex dynamics

We end with a nice application of the moduli of annuli to complex dynamics. In studying the
Mandelbrot set for cubic polynomials, Branner and Hubbard had a situation in which they
had an infinite set of nested annuli, and they needed a criterion for whether the intersection
consisted of one or many points. They used 2 basic results about annuli:

1. Grotzsch’s inequality: Suppose a sequence A4, of open annuli are nested inside an open
annulus A, each winding once around the hole in A. Then

ZmodAn < modA

2. If A is an open bounded annulus of infinite modulus the bounded component of the
complement (i.e. the hole) consists of one point.

Thus if you can find a sequence A, of nested annuli such that the sum of their moduli
is infinite, you know that the hole in the middle of the nest consists of just one point.
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Warning: These notes are informal notes which are only meant to give a hint as to the
variety ot topics the investigation of moduli spaces in relation to quantum field theory can
lead to.

1. Moduli space of a Riemann surface

This section is closely related to Caroline Series’ paper on moduli spaces and the reader is
referred to the references therin concerning the contents of this section.

Let A be a smooth compact surface without boundary of genus p. The purpose of this

first section is to define the moduli space of such a surface. We shall need the notions of
Riemannian metric and conformal structure.
Riemannian metrics Let p be a point on A and let (2!, #?) be a system of local coordinates
at point p on A. A Riemannian metric on A at point p is defined locally at point p by a
symmetric two by two matrix (g4s) with strictly positive determinant. A Riemannian metric
is a global object ( a covariant symmetric two tensor on A) but its local description depends
on the choice of local coordinates. If f is a diffeomorphism of the surface A that takes
(21, 2?) around p to another local system of coordinates (y',y?) around f(p), then locally
gab transforms to

(f*9)ab = gl

where

dxc dad

/ f— _—

gab - E ng dya dyb .
c,d=1,2

This defines an action of the group Dif f(A) of diffecomorphisms on the space Met(A) of
Riemannian metrics on A:

a: Diff(A) x Met(A) — Met(A)
(f,9) — [T

The metric is a tool to measure lengths of curves and areas of surfaces on the manifold.
In particular, since A is compact, we can define the area of A for a given metric g by

Ag(A)E/A\/detg
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as well as the area

Az, 9) = Agey(A) ()

of #(A) where z is a map that embeds A in R?,

One can stretch or shrink the metric by multiplying it by a constant factor g — kg, k > 0
thus multiplying the area A,(A) by the same factor k. One can also multiply the metric
pointwise g(p) — (e?g)(p) = e?Plg(p) by a strictly positive function on A. Letting Met(A)
denote the space of Riemannian metrics on A (it is an infinite dimensional space) and setting

W(A) = {e?, ¢ € Map(A,R)}, we thus define an action of W(A) on Met(A):

B W(A) x Met(A) — Met(A)
(e?,9) — e .g.

The conformal class of a given metric ¢ is the set of Riemannian metrics

[9] = {e®g,¢ € Map(A,R)}

A conformal transformation of A is a diffeomorphism f of A which preserves the conformal
class of the metric, i.e such that f*g = e?g where ¢ is a real function on A.

Given a metric ¢ on A and a local coordinate system (2!, 2?) at point p € A, one can

diagonalise the metric and thus find another system of coordinates (y!,y?) in which the
e$(P) N, 0

0 e®(P) ),
conformal class of g is also diagonal in this coordinate system and its matrix takes the form
{6¢A1 0

metric matrix takes the form where Aj, Ay € R. Then any metric e®g in the

0 6¢A2
[¢9]. Setting 2z = y* + iy?, one can equip A with a complex structure. There is in fact a one
to one correspondence between the set C'(A) of complex and the set Conf(A) of conformal
structures on A .

}. The system of coordinates (y!,y?) is called isothermal for the conformal class

We finally have the following isomorphisms:
Met(A)/W(A) = C(A) ~ Conf(A).

The action a of the diffeomorphism group on Met(A) induces an action on Conf(A) (and
hence on C'(A) ), setting for f € Dif f(A), f*[g] = [f*¢]. In general there are diffeomorphisms
which do not preserve a given complex (or conformal) structure; they take a given complex (or
conformal) structure to another one (see Caroline’s talk). These two complex (or conformal)
structures are then called equivalent.

The moduli space Mod(A) of A is the set of non equivalent complex (or conformal) struc-
tures on A. It can be described as a quotient space in four equivalent ways:
CN)/DIff(N) ~ Conf(A)/Diff()
Met(A)/W(A)/Dif f(A)
Met(A)/Dif f(A)/W(A)

112

where Dif f(A) acts via the action a on the space of metrics and W (A) via the action §.

In what follows, we want to interpret the moduli space Mod(A) in the framework of string
theory in terms of the quotient space of a space of paths by the action of a symmetry group.
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2. Moduli space and path integrals

The space of paths

Here, we shall see A together with a fixed Riemannian metric g on A and an embedding
z: A — R? as a path descibed by a loop (or closed string) moving in space time R?. The
starting point and the end point of its trajectory, which would introduce boundaries to the
surface described by the loop are taken at infinitely distant times so that we can assume
everything happens as though the surface A were boundaryless and compact! If we consider
several interacting loops, i.e loops meeting up together and splitting again, the resulting
surface can be of any genus p > 0.

The space P of paths can therefore be seen as the product space Emb(A) X Met(A) of
the space Emb(A) of embeddings of A into R? with the space of Riemannian metrics on a
boundaryless compact smooth surface A of any genus.

Diff(A) as a symmetry group

A classical string evolves acording to a minimal energy principle and describes a surface
with minimal area A(z,g) as defined in (x). This area is also called the classical action or
enerqy.

Since the area does not depend on the chosen parametrization of the surface A, this action
A(z,g) is invariant under the action of the diffeomorphism group Dif f(A), i.e

Az o f, ffg) = Az, g).

We see this group as a symmetry group for the classical action or energy.

In fact, this action is also invariant under the action of W(A) so that the symmetry group
Sym is in fact a larger group, the smallest one containing both W (A) and Dif f(A), which
we shall not describe in detail here.

Moduli space

Diffeomorphisms act trivially on E'mb(A) via composition (z — zo f, f € Diff(A),z €
Emb(A)) and W(A) does not act on EXmb(A) so that the action of Sym(A) on Emb(A)
reduces to that of Dif f(A). Combining this action with the action of Sym(A) on the space
of Riemannian metrics, one can define an action of the symmetry group Sym on the space
of paths P = Emb(A) x Met(A).

We shall call two paths equivalent when there is an element of the symmetry group that
transforms one into the other. The space of non equivalent paths is thus described by

“P/Sym = (Emb(A)/Dif f(A)) x (Met(A)/Sym(A)) = (Emb(A)/Dif f(A)) x Mod(A)”

Since the moduli space coincides with Met(A)/Sym(A), we see how it arises here as a subspace
of the space of non equivalent paths P/Sym(A).

Path integrals

In quantum field theory one cannot ”see” paths but only ”mean values” over the space of
paths, namely observables. An observable is the mean value < O > of a function O : A - R
with respect to a formal measure on the space of paths:

<0 >= Z_l/ O(p)e= 4P dp
P
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where A(p) is the classical action (or energy) of the theory-in the case of strings it is the area
A(z,g) given in (x)- "dp” is a formal volume measure on the infinite dimensional space of
paths P, and Z is the normalising constant 2 = fp e~ A0 dp.

Giving a meaning to such integrals on infinite dimensional manifolds is extremely difficult
and the description of path integrals gives rise to problems of a geometric or topological
nature, which a priori can look very different from the original one, such as looking for
invariants of manifolds [D] (see also the recent work by Seiberg and Witten on the subject
reviewed in [B])

In the case of strings mentioned above, an interpretation of the partition function

“7 / e—S(x,g) d$dg”
Emb(A)x Met(A)

was first suggested in [P] (see also [Po] about this interpretation ) and further investigated
by many authors using algebraic-geometric techniques (see e.g [Bo], [Ph] ,[S])

Anomalies

Whenever the function O is invariant under the symmetry group, one can hope to reduce
the path integral given by < O > to an integral on the moduli space (which is sometimes
finite dimensional as in the case of strings (see C.Series’ talk)), when seen as a quotient of
the space of paths via the action of the symmetry group, since the latter leaves the classical
energy A(p) arising in this integral invariant.

However, there can be an obstruction to doing this if the ”formal volume measure” denoted
by ”dp” on the path space is not invariant under the action of the symmetry group. This
is the case in the example considered above where "dg” is not invariant under Sym(A); the
symmetry we have at the classical level (S(z,g) is invariant under Sym(A) is 7 broken” at
the quantised level when ”integrating” w.r.to the "measure ” ”dx dg” on the space of paths.

This gives rise to anomalies, which can be interpreted as topological and geometric ob-
structions on a certain line bundle built on moduli space, namely a determinant bundle (see
e.g [ASZ],[Bo],[BF],[F]). The fact that there is a determinant line bundle involved is related
to the fact that a transformation of the above ”path integral” via the action of the group
gives rise to a jacobian determinant, also called the Faddeev-Popov determinant [BV]. In the
case of stings mentioned above, the (conformal) anomaly arises from the non invariance of
the formal measure ”dg” on the space of metrics under the action of W(A) [F].
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1. Introduction

Moduli spaces are one of the fundamental constructions of Algebraic Geometry. They arise
in connection with classification problems and, although it is a fairly delicate subject, I will
try to describe it in an elementary fashion.

Roughly speaking a moduli space for a collection of objects A and an equivalence relation
~ is a classification space, i.e. a space (in some sense of the word) such that each point
corresponds to one and only one equivalence class of objects. Therefore, as a set, we define
the moduli space as equivalence classes of objects A/ ~. In our setting the objects are
algebraic objects, and because of this we want an algebraic structure on our classification set.
Finally we want our moduli space to be unique (up to isomorphism).

So the basic ingredients for a moduli problem are a collection of objects A, an equivalence
relation ~ on A and a concept of family of objects of A parametrized by an algebraic variety
(or ascheme) S. (See the lectures on Algebraic Geometry for the precise definiton of algebraic
variety and scheme.) Such a family consists of a collection of objects X, one for each s € 9,
which fit together in some way corresponding to the structure of S. The precise definition
of family depends on the particular moduli problem; however, in all cases, it satisfies the
following properties:

1. A family parametrized by the variety {pt} (consisting of a single point) is a single object
of A.

2. There is a notion of equivalence of families parametrized by any given variety S, which
gives the equivalence relation on A when S = {pt}; we denote this relation again by ~.

3. For any morphism ¢ : S’ — S and any family X parametrized by S, there is an
induced family ¢* X parametrized by S’. Furthermore we have the functorial properties:
1% =identity, (¢)* = ¥*¢*; and it is compatible with ~, i.e. if X ~ X’ then
O X ~ p* X',

®These notes are intended to support our cross disciplinary discussion on moduli spaces. Many people
have made important contributions without even being mentioned here. If I have made wrong attributions [
apologize for that. In no case do I claim that any idea here at all originates from me.
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The moduli problem consists in giving to A/ ~ a structure of algebraic variety which
reflects the structure of families of objects of A.

2. Fine moduli spaces, coarse moduli spaces and quotients

We consider the contravariant functor F : (Varieties) — (Sets), S —— F(S), where F(9) is
the set of equivalence classes of families parametrized by the variety S. Suppose that M is
an algebraic variety with underlying set is A/ ~. For any family X parametrized by S, we
denote by ux : S — M the map given by ux(s) := [X;] where [X;] is the equivalence class
of the object X.

Definition A fine moduli space for a given classification problem is a pair (M, V) which
represents the functor F.

Let M be a variety and ¥ : F — Hom(., M) the natural transformation given by
U(S)(X) = pux for any variety S and any family X parametrized by S. By definition
the pair (M, ¥) represents the functor F if ¥ is an isomorphism of functors.

Remark 1. From the definition it easily follows that the underlying set of the variety M is
Af ~.

Remark 2. If a fine moduli space exists for a given classification problem, then it is unique
(up to isomorphism).

The morphism 13 € Hom (M, M) determines, up to the equivalence relation ~, a family
U € F(M) which gives us the following alternative definition:

Definition A fine moduli space for a given classification problem consists of a variety M
and a family U parametrized by M such that, for every family X parametrized by .S, there
is a unique morphism ¥ :.5 — M with X ~ U*U. The family U is called a universal family
for the given problem.

Unfortunately there are very few classification problems for which a fine moduli space
exists and it is necessary to find some weaker conditions which nevertheless determines a
unique structure of algebraic variety on M.

Definition A coarse moduli space for a given classification problem consists of a variety
M together with a natural transformation ¥ : F — Hom(., M) verifying:

1. W(pt) is bijective,

2. For any variety N and any natural transformation ¢ : F — Hom(., N), there exists a
unique natural transformation 7: Hom(., M) — Hom(., N) such that ¢ = 7.

Remark 3. From the definiton it easily follows that M is a variety with underlying set A/ ~.
Remark 4. If a coarse moduli space exists for a given classification problem, then it is unique
(up to isomorphism).

Remark 5. A fine moduli space for a given classification problem is always a coarse moduli

space for this problem but, in general, not vice versa. In fact, there is no a priori reason why
the map W(S) : F(S) — Hom(S, M) should be bijective for varieties .S other than {pt}.
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In the last part of this section we introduce the notion of categorial quotient of a variety
by the action of a group and we will explain its connection with moduli problems.

Definition Let GG be an algebraic group acting on a variety X. A categorial quotient of
X by G is a pair (Y, ¢) where Y is a variety and ¢ : X — Y is a morphism such that:

1. ¢ is constant on the orbits o(z) = {gz;9 € G} C X of the action;

2. For any variety Z and for any morphism ¢ : X — Z which is constant on orbits, there
is a unique morphism g : Y — Z such that g = .

If in addition ¢~1(y) consists of a single orbit for all y € Y, we call (Y, ¢) an orbit space.

Remark 6. A categorial quotient is unique up to isomorphism and it exists in general cir-
cumstances. (For instance, if (G is a reductive group acting on an affine variety X; or if G is
a reductive group acting on a projective variety X and we restrict our attention to the open
subset X** C X of semistable points of X.)

To relate categorial quotients to moduli spaces we need to introduce some extra definitions.

Definition For a given moduli problem, a family X parametrized by a variety S is said
to have the local universal property if for any family X’ parametrized by S’ and any point
s € 57, there exists a neighbourhood U of s such that X|’U is equivalent to the family induced
from X by some morphism U — 5.

Proposition 1 Suppose that, for a given moduli problem, there exvists a family X parametrized
by S having the local universal property. Suppose that a group G acts on S and that X; ~ X;
if and only if s and t belongs to the same orbit of this action. Then:

1. Any coarse moduli space is a categorial quotient of S by G;

2. A categorial quotient of S by G is a coarse moduli space if and only if it is an orbit
space.

More details on fine moduli spaces, coarse moduli spaces and quotient can be found, for
instance, in [MFK], [MS] or [N].
3. Examples
As particular examples of moduli problems, we will briefly discuss the three following cases:
1. Hilbert schemes;
2. The moduli space for the isomorphism classes of smooth curves of genus g;

3. The moduli space for stable vector bundles with given Chern classes on a projective
variety X.
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Example 1

Let P" be the r-dimensional projective space over a field k. The first classification problem
that we will deal with is the classification problem for closed projective subschemes X C P~
and we will see that there exists a fine moduli space for such a classification problem. Roughly
speaking our objects will be closed subschemes of P” with given Hilbert polynomial p(t) € Q[¢],
the equivalence relation will be the equality and we have the following notion of family:

Definition A flat family of closed subschemes of P" parametrized by a k-scheme S is a
closed subscheme X' C P = P"x S such that the morphism A" — S induced by the projection
Pe=P"x .S — 5 is flat.

It is an important fact that flat families P = P'x .S D & — 5 of closed subschemes
of P" parametrized by a connected k-scheme S have all their fibres with the same Hilbert
polynomial.

We fix an integer r and a polynomial of the form p(t) = >7_ja;("t") € Q[t] where a;’s
are integers. We consider the contravariant functor

Hilby, ) : (k — schemes) — (Sets)

where Hilby,,y(:S) := {flat families of closed subschemes of P with Hilbert polynomial p(¢)
parametrized by S}. In 1960, A. Grothendieck proved (See [G] or [M]):

There is a unique projective scheme Hilb;(t) which parametrizes a flat family, P” x Hilb;(t) D

w5 Hilb;(t)7 of closed subschemes of P” with Hilbert polynomial p(¢), and having the fol-

lowing universal property: for every flat family, P" x .S D X i> S, of closed subschemes of P”
with Hilbert polynomial p(t), there is a unique morphism g : S — Hilb;(t)7 called the classi-
fication map for the family f, such that 7 induces f by base change; i.e. X' =S x Hilyy, W.

()
Following the definiton of fine moduli space 7 is called the universal family.

In the usual language of categories the pair (Hilb;(t)7 7) represents the functor Hilbr(t)
and the classification problem for projective subschemes has a fine moduli space.

Since any closed subscheme of P” with Hilbert polynomial p(t) = (t:n) is a linear subspace
of P” of dimension n, we have:

Hilbzﬂrn) = Grass(n+ 1,r +1).

Hence the Hilbert schemes can be considered as generalizations of the grassmannians; i.e.
varieties parametrizing all (n+1)-dimensional vector subspaces of a given (r+1)-dimensional
vector space V.

Remark 7: We know the existence of the Hilbert scheme but its local and global properties
are very far from being understood; even for the case of projective space curves. 1 will not
discuss here either recent contributions or open problems.

Example 2

We consider the set {C,} of smooth curves of genus g and we ask whether the set M, of such
curves, up to isomorphism, may be given the structure of an algebraic variety in a natural
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way (such is the case for g=1, where the j-invariants form an affine line). To begin with, we
define a flat family of smooth curves of genus g with base S to be a variety V and a flat
morphism 7 : V — S such that for each point s € S the fiber V; := 77!(s) is isomorphic to
(', for some . The best way to specify the algebraic structure on M, would be to require it

to be a universal parameter variety for families of curves of genus g, in the following sense:
we require that there be a flat family & — M, of smooth curves of genus g such that for
any other flat family f : V — T of smooth curves of genus g, there is a unique morphism
g : T — M, such that V = ¢*X’. In this case we call M, a fine moduli space for the curves

{Cal.

Unfortunately, there are very few classification problems for which a fine moduli space
exists. One of the reasons why the universal family & — M, does not exist is that there are
nontrivial flat families of smooth curves of genus g, all whose fibres are isomorphic to each
other. Hence it is necessary to find some weaker condition which nevertheless determines a
unique algebraic structure on M,. This problem was settled by D. Mumford. He proved that
for ¢ > 2 there is a coarse moduli space M, which has the following properties (See [M];
Theorem 5.11):

1. The set of closed points of M, is in one-to-one correspondence with the set of isomor-
phism classes of smooth curves of genus g;

2.4f f:V — T is a flat family of smooth curves of genus g, then there is a morphism
g : T — M, such that for each closed point ¢t € T', V; is in the isomorphism class of
curves determined by the point ¢(t) € M,.

Since all smooth connected curves of genus g=0 are isomorphic to P!, we have My = {pt}.
In case g=1, the j-invariants of elliptic curves define an affine line which is a coarse moduli
space M; for the family of elliptic curves. In 1969, P. Deligne and D. Mumford proved that
M, for ¢ > 2 is an irreducible, quasi-projective variety of dimension 3g-3 (See [DM]). An
excellent discussion of this construction is given in [MFK], which includes references to other
examples of the applications of geometric invariant theory as well.

Remark 8: The dimension of M, was already stated by Riemann in his celebrated paper
"Theorie der Abel’schen Functionen” of 1857 (See [R]). The word "moduli” is due to him
and the subject has its origins in the theory of elliptic functions. The irreducibility was
already observed by Klein (See [K]) and follows from results of Liiroth and Clebsch; and it
was only much later that Baily showed that A, has a natural structure of quasi-projective
normal variety of dimension 3g-3.

Remark 9: Nowadays there are three principal approaches to constructing M,.
1. In a transcendental setting, it can be constructed as a quotient of the Teichmiiller space,
2. As a subvariety of a quotient of the Siegel upper half-space, or

3. Using Mumfords’s geometric invariant theory, it can be constructed as a quotient of a
Hilbert scheme.

The moduli space M, is not compact, i.e., it is a quasi-projective variety but not a projective
variety. The right choice of boundary points for M, was discovered by Mayer and Mumford,
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in 1963, in an unpublished work. For an excellent discussion of M, and its compactification,
the reader could look at [MFK].

Example 3

As last example we will consider the moduli problem for vector bundles on a smooth projective
variety X. We consider the set A/ ~ of isomorphism classes of rank r vector bundles on X
with fixed Hilbert polynomial H(m) € Q[m] and we would like to endow A/ ~ with a natural
structure of scheme. To this end we define a family of vector bundles of rank r and Hilbert
polynomial H(m) parametrized by a k-scheme S as a vector bundle £ on S x X such that
for all s € 5, £(s) is a rank r vector bundle on X = {s} x X with Hilbert polynomial H (m).

Unfortunately this moduli problem has no solution and to get at least a coarse moduli
space we must somehow restrict the class of vector bundles that we consider. What kind of
subfamily should be taken? In [MA], [MA1], M. Maruyama found an answer to this question:
stable vector bundles. He proved: Let X be a smooth projective variety and let A/ ~ the set
of isomorphism classes of stable vector bundle on X of rank r and Hilbert polynomial H (m).
Then, there is a coarse moduli scheme M which is a separated scheme, locally of finite type.
This means:

1. The closed points of M are in one to one correspondence with the elements of A/ ~;

2. Whenever F is a flat family of vector bundles of A/ ~ | parametrized by a scheme T
(i.e. F is a vector bundle on X x 7', flat over T, whose fibres are in A/ ~), then there
is a morphism ¢ : " — M such that for each closed point t € T', 1(¢) is the point of M
corresponding to the class of the vector bundle F; which is the fibre of F ovet ;

3. The morphism 1 can be assigned functorially; and

4. M is universal with the properties (1) and (2).

Remark 10: In spite of the great progress made during the last decades on the moduli spaces of
vector bundles on smooth projective varieties (essentially in the framework of the Geometric
Invariant Theory by Mumford), very litle is known about their local and global structure.
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1. The inverse problem in Galois theory

The basic object of interest to number theorists is the field of rational numbers Q, along with
its field extensions. We will first consider finite Galois extensions of Q : given an irreducible
polynomial P € Q[T], with roots a; in an algebraic closure Q of Q, we let K, be the smallest
field containing @ and all the a;. Such a field is called a Galois extension of Q. The Galois
group G = Gal(K,/Q) = Autg(K,) is defined to be the group of field automorphisms of
K, that fix the elements of Q. It is a finite group, and the fundamental theorem of Galois
theory asserts that there is a bijective correspondence between subfields of K, which are
Galois extensions of @@, and normal subgroups of G. Namely, a normal subgroup H of G
corresponds to the subfield L of elements of K, fixed by all the automorphisms in H, and
Gal(L/Q) = G/H. In that case, K, is also a Galois extension of L, with Galois group H.
We express this in the following diagram:

K,

| H

I }a
| G/H

Q

The inverse problem in Galois theory consists of finding out which groups can be Galois
groups of extensions of @, and constructing explicit extensions with such groups as Galois
groups. For example, all finite abelian groups, the symmetric groups 5, and the alternating
groups A, can be Galois groups, as can the 26 sporadic simple groups (except maybe the
Mathieu group Msz). With a combination of methods, many families of groups have been
shown to be Galois groups. E. Noether found algebraic geometric conditions under which
a group is a Galois group. More recently, Matzat and Mestre, among others, have worked
on constructive approaches and given explicit polynomials that define Galois extensions for

new families of groups. One conjectures, and most experts believe, that all finite groups are
Galois groups over Q.

149
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2. Grothendieck’s approach

In the last few years, a novel top-down approach has been developed, in particular by Drin-
fel’d, Thara, Schneps, Lochak, inspired by ideas of Grothendieck. It consists of studying
directly the group Gg = Gal(Q/Q) = Autg(Q). We extend our notion of Galois extensions
to infinite algebraic extensions : we see a finite Galois extension K of Q as a subfield of Q,
and see the Galois group of K as a finite quotient of G'g. The inverse problem in Galois
theory is now to see which finite groups are quotients of GG, and in general to describe the
structure of the large and mysterious group Gy.

Q
| Goo
K } Go

| G
Q

The “abelian” part of G is the (infinite) quotient of Gig which corresponds to Q2 the
minimal subfield of Q containing all finite extensions of Q with commutative Galois group.
It is isomorphic to Z* (the multiplicative group of the profinite completion of the integers).
Whilst the structure of Q" and the action of Z* on it are relatively well understood, we know
very little about the subgroup I' = Gal(Q/Q®) of G, or about the way it combines with
Z* = Gg/T to form Gg.

Q

| T
Qab }GQ
| 2

Q

Grothendieck’s “dream”, as he expressed it in L’esquisse d’un programme, is to understand
combinatorial properties of Gg by studying the way it acts on geometric objects, with the hope
of obtaining a complete description of Gp. The idea is to reformulate geometric properties
of certain varieties and in particular of certain moduli spaces, in terms of their fundamental
groups and of the action of G'g on these fundamental groups.

3. Geometric action of G

We are now going to describe some geometric groups on which Gg acts. Let us consider
Galois extensions of the field C(T') in one indeterminate over C. There is a one-to-one
correspondence between extensions of C(7') unramified outside of 0,1 and co (meaning the
ideals generated by the polynomials T, T'— 1, and the rational function %), and unramified
coverings of the projective line with three points removed P<1C\ {0,1,00} : the field extensions
are the function fields of the coverings

The Galois groups of the field extensions are the automorphism groups of the corresponding
coverings; they are themselves quotients of the fundamental group of P<1C\ {0, 1, 00}, which is
the free group on two generators Fj.

We now consider unramified coverings of P\ {0,1,00}. Belyi’s theorem asserts that if
we have a covering 7 : X — P{, where X is a Riemann surface (i.e. a curve defined over C)
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such that the critical values of 7 lie in Q, then there is an equation for X with coefficients in
Q and a new rational function 7 on X with coefficients in Q and critical values in {0, 1, 00}.

Let m: X — P<1C be a Belyi cover, i.e. X is a Riemann surface and the critical values of 7

o ——

lie in {0, 1,00}. We can consider the field C(X), compositum of the function fields C(Y") for

all finite coverings Y of X. The Galois group Gal(C(X)/C(X)) is the profinite completion
71(X) of the fundamental group of X (i.e. the projective limit of the groups 71 (X)/N for
normal subgroups N C m{(X) of finite index).

Since X is defined over Q, it is in fact defined over a number field K (i.e. a finite extension
of Q). We have K = Q, and every finite cover Y of X is defined over a finite extension of K.
Let K(X) denote the field of functions on X defined over K, Q(X) the field of functions of
X defined over Q, and for every finite cover Y of X, let Q(Y') denote the field of functions on

Y defined over Q. Let Q(X) denote the compositum of the fields Q(Y') for all finite covers

e ——

Y of X. A classical theorem states that C(X) = Q(X) ® C and C(X) = Q(X) ® C, so the

o ——
e ——

Galois group Gal(Q(X)/Q(X)) is isomorphic to Gal(C(X)/C(X)) which is isomorphic, as
we noted above, to the profinite fundamental group #;(X). However now the field Q(X) is
a field extension of K(X) with Galois group G'x = Gal(Q/K), and we have the following

diagram :

Q(X)
(X))
Q(X) g

| Gk
K(X)

A theorem states that the huge group G can be written as a semi-direct product of 71 (X)
with G'i. In particular, this means that there is an action of G’ on 71 (X) (in fact there are
many such actions). In the case where X is defined over Q, we now have an action of Gig on

#1(X).

4. The moduli space M4

The moduli space Mg 4 of Riemann surfaces of genus 0 with four marked points is isomorphic
to P\ {0, 1,00}, which is a variety defined over Q. So when we look at coverings of P\
{0,1, 00}, we actually have coverings of the moduli space, and the arguments above show
that there is an action of Gg on 71 (My4). This is very interesting, because mathematicians
from other areas, ranging from mathematical physics to geometry, have studied such moduli
spaces, and described many of their properties.

There is a very large group called GT which also acts on the profinite completion of the
fundamental group of the moduli space. Drinfel’d has given an explicit description of GT as a
set of elements satisfying some combinatorial conditions, so that we can actually make certain
computations with elements of GT. Drinfel’d and Ihara have shown that G is contained
in GT. One would now like to know whether G is all of @, or how to identify Gg as a
subgroup of GT so as to obtain an explicit description of its action on moduli spaces, and
thus get a better grasp of the combinatorial properties of Ggp.

The philosophy of Grothendieck’s approach expresses the idea that the moduli spaces M, ,
of Riemann surfaces of genus ¢ with n marked points (or “punctures”) are the varieties defined
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over ) which contain all information about all the curves defined over C. In particular they
contain the information about the curves defined over Q, which in turn give us informations
about Gp. Indeed, Ggp acts on all the profinite fundamental groups of the moduli spaces
M, ., respecting many natural morphisms between these groups which come from geometric
morphisms between the spaces. The following questions are therefore natural ones to ask
when we try to reach a further understanding of Ggp and of its relation to GT -

e What is the full group of oo-tuples of automorphisms (¢g.)4, of the 7y (M, ) for
varying ¢g and n, respecting all the natural morphisms between these groups? (It would
seem that the answer is GT', as Drinfel’d suggests).

e The group of pairs of automorphisms of the “Teichmiiller Tower” consisting of the two
moduli spaces Mg 4 and Mg 5, with natural morphisms between them, is precisely G'T'.
To what extent do Mg 4 and Mg s contain “all the information” about all the M, ,,?

e Since the moduli spaces contain “all the information” about a class of objects defined
over Q, is it reasonable to think that no greater group than G/g, which is after all a
purely arithmetic group, can act on the tower of their profinite fundamental groups?
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The multidimensional Riemann—Hilbert problem,
generalized Knizhnik—Zamolodchikov equations and
applications

Valentina A. Golubeva

Let L = |JZ, L; be a reducible algebraic variety in CP™ and p : 7 (C* \ L) — GL(n)
a representation. The Pfaffian system of Fuchsian type with singular set L is the system

of the form dF' = QF, where Q = 377, Ai%7 and Y 7 A; = 0. The statement of the
multidimensional Riemann—Hilbert problem is the following: for given p find the Pfaffian
system of Fuchsian type whose fundamental solution realizes the given representation. For
the simplest case of the variety L (L is the union of non-singular algebraic hypersurfaces
with transversal intersections) some conditions of solvability were obtained (V.Golubeva,
A.Bolibruch, T.Otsuki), some partial results are known in low dimensions also for more

complex varieties L.

The Knizhnik—Zamolodchikov equations associated to the root systems A, have their ori-
gin in the Wess—Zumino—Witten model of quantum field theory as the equations for the
n—point correlation function. The construction of the different generalizations of these equa-
tions, in particular, for the other root systems B, C, D permits to consider these equations
as examples of solvable cases of the Riemann—Hilbert problem. Indeed, for some root system
R we are given the reducible algebraic variety in CP", usually it is an arrangement of a fi-
nite number of hyperplanes, the known fundamental group of the complement to this variety
in CP" (the last results in this direction belong to D.Markushevich and A.Leibman) and a
prescribed (by physical model) representation p. The generalized Knizhnik-Zamolodchikov
equations for a variety of the assumptions on p was constructed by [.Cherednik, A.Matsuo,
A.Leibman, V.Golubeva and V.Leksin, ect. The quantum variant of Knizhnik—Zamolodchikov
equations (N.Reshetikhin and others) is known.

The generalized Knizhnik—Zamolodchikov equations have applications in contemporary
quantum field theory and statistical mechanics: in the theory of quantum Hall effect, in the
theory of anyons, super—conductivity, etc. The KZ theory is closely connected with the theory
of many—body systems, described by the systems of Calogero-Moser—Sutherland type.
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Quadratic and hermitian forms over rings

Laura Fainsilber

Université de Franche-Comte, Besancon, France

laura@math.univ-fcomte.fr

For quadratic forms over a field, Witt’s cancellation theorem asserts that if ¢, g1, and ¢
are three non-singular forms such that ¢; & ¢ ~ ¢2 & ¢, then ¢; ~ g2. We want to generalize
this cancellation to the situation of hermitian forms over rings. Let A be a ring with an anti-
automorphism : A — A of order 2, let M be a reflexive finitely generated left A-module. A
hermitian form is a biadditive map h : M x M — A such that h(am,bn) = ah(m,n)b and
h(n,m) = h(m,n) for all m,n € M and a,b € A. A form is said to be unimodular if the
adjoint homomorphism it induces from M to its dual is bijective. If A is commutative and ~
is the identity, then the hermitian forms are exactly the symmetric bilinear forms. We give
counter-examples to show that the analog of Witt’s cancellation theorem does not hold for
symmetric bilinear forms over the ring of integers Z. However, cancellation is possible for
hermitian forms (unimodular or not) over rings which are finitely generated algebras over
complete discrete valuation rings, such as rings of matrices over the p-adic integers M, (Z,)
or group rings Z,[G] for finite groups G.
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On Sampling plans for inspection by variables

Vera [. Pagurova

Moscow State University, Russia

Designing of optimal sampling plans by variables is considered when the item quality
characteristic follows a distribution belonging to a two parametric location—scale family of
distributions. Two—class and three—class procedures of sampling plans by variables are inves-
tigated.

A random sample of n items is drawn from the lot. Inspection procedures are based on
the measurement of an item quality characteristic X. An attributes plan bases the decision to
accept or reject the lot only on the number of nonconforming items in the sample. Variables
plans are able to achieve the same control with a smaller sample size by making use of the
distribution of the initial measurements.

Let Xy, X5,..., X, be independent identity distributed variables with the common dis-
tribution density f((z — a)/b)/b, |a| < oo, b > 0, a and b are unknown, f(z) = F'(z),
X(1) £ X(g) < -+ < X(p) are order statistics, X = >, X;/n, SE=35" (X;—X)?*/(n-1).

1 — Two—class procedure. An item will be considered to be conforming if X < u, otherwise
nonconforming. Set p = P{X > u}. The hypothesis of interest is H : p < py (100pg
is maximum allowable percent of nonconforming items) against K : p > po. We denote

d=(a—u)/b,do=—F"1(1-po), Yi=(X;—a)/b,i=1,...,n.

Theorem 1 Let f(z) = (2r)~ 2 exp(—22/2), then the uniformly most powerful invariant
(w.m.p.i.) test at level o of H against K rejects H when (X — u)/S > ¢, with c, defined by
P{(X—u)/S>c,|d=dy} = .

Theorem 2 Let f(z) = exp(—a), x > 0, then the u.m.p.i. test at level o of H against K
rejects H when (X 1) — u)/(X — X)) > ¢ with ¢, defined by P{(X(y) — u) /(X — X)) 2
co | d=dp} = a.

Theorem 3 Let f(z) =1, 0 < a <1, then the u.m.p.i. test at level @ of H against K rejects
H when (X(1)—u)/(X(n)—X(1)) > ca with ¢, defined by P{(Xq)—u)/(X(n)— X)) > ca | d=
do} = .

Now we consider an asymptotic approach. Denote EY; = u, DY; = 0%, m; = E((Y; —
w)/o)?, A(d) is some function of d, p1, 0, ms, myg; 2, is p—quantile of the standard normal
distribution.

Proposition 4 If EX{ < oo, then the test of H against K with the rejection region ((X —
u)/S — (u+do)/o)/n//A(do) > z1—o has the true level a when n — oc.

An asymptotic test with estimators of @ and b based on central order statistics is consid-
ered.
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2 — Three—class procedure. An item will be considered to be conforming if X < uq, to be
marginally conforming if u; < X < wuy and to be nonconforming if X > wuy where u; < ug,
p1 = P{X > wui}, po = P{X > wuy}. The probability of acceptance of a lot of arbitrary
quality (p1, p2) is studied.
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Evaluation of the mathematical aspects of the meeting
Isabel Labouriau

Universidade do Porto, Portugal

At the end of the meeting a discussion took place in order to evaluate the different math-
ematical parts. The following is a report of that discussion.

The general feeling was that the 3 series of talks and the interdisciplinary discussion on
moduli spaces were of good standard. Non-trivial mathematics were presented in an un-
derstandable way, generated interdisciplinary discussions and even some informal workshops
(“nothing to be ashamed of” was one comment). The talks had more participation than
usual and speakers felt it was more interesting this way, that is, with a lot of questions asked,
although this sometimes made it difficult for them to reach their goals.

The work of the “planted idiots” (members of the audience in charge of asking questions
besides the spontaneous ones - a habit started at the EWM meeting in Luminy) was important
to keep the talks at the right level. They created an informal atmosphere in the first talks
that was kept through the end. In the last talks there were no “planted idiots”; the only
questions were the spontaneous ones but it was pointed out that we should have kept the
good habit to the end. For next time it was suggested that speakers get more information on
the type of talk expected - some talks underwent big changes at the last minute.

It was agreed that three topics in mathematics plus one interdisciplinary discussion to-
gether with the non mathematical discussions was too much for one week. We should be
less ambitious for the next meeting and have more time for talking about maths instead of
listening. Too little time was allowed for the discussion on moduli spaces - the organizers
were not sure how it would work - and it turned out to be so interesting it was continued
in the spare time. One suggestion is that we have fewer talks towards the end of a meeting
in order to have time for interdisciplinary discussions, like the one planned on moduli spaces
and the spontaneous one on renormalization.

There were several opinions on the best way to organize a series of talks next time, opinions
varied. The choice is not only between summer—school type or research —conference type talks;
we may want to do something new, talks that generate an interdisciplinary discussion. For
each series we may need an introductory session to introduce the language and basic results.
This is hard on the first speaker and where do we stop when going backwards? The goal of
the series is not to learn the language but to transfer ideas with a minimum of language. Two
of the series in Madrid had an introduction that was necessary, but not the main goal. Some
fields may be naturally more technical and need more introduction; some areas also have a
tradition on non-technical talks. Maybe we should not spend too much time on elementary
things, after all, one may understand a lecture without the details and appreciate it; we are
used to that. With such a wide audience it is difficult to avoid some form of introduction,
the question is how much.

The role of the organizer of a series was also discussed and how much she should interfere,
either directing the speakers and choosing the topics so as to reach a certain goal or just
trying to get the best maths we can, even at the cost of some coherence. Again some felt that
it depended on the subject, as it is difficult to give a good idea of the field with homogeneous
talks.
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The talks that were not part of a series had a small audience - partly because the program
was already heavy and partly for the lack of advertising, those interested could not always
attend a talk. Parallel sessions were not thought to be a good solution, it makes talks more
difficult to attend and somehow tend to become a secondary hierarchy without any scientific
basis. Many of us prefer posters as they can be read at one’s own speed and it is easier to
ask questions. The problem is that people usually do not make good posters, maybe the first
time we need guidelines. It might work if everybody had a poster, with a photo on it and
maybe some historical background, so the posters would be less linked with hierarchy and
take the place of introductions. It would be good to leave them on all the time and have a
social event near them to break the ice.
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In between meetings: the “everyday” life of EWM
Report by Sylvie Paycha

International EWM meetings are organised every two years; they offer an oportunity for
women mathematicians from all over Europe to meet together, exchange ideas on mathemat-
ics as well as on women and mathematics. However, once every other year is seldom, and
we feel EWM should go on “living” in between meetings. What could the “everyday life” of
EWM be? E-mail offers many possibilities, such as sending the Newsletters to members of
EWM and thereby keeping them informed of what is going on in Europe in the way of women
and mathematics, discussing plans for the future among members of the standing committee,
organising the proceedings of the last conference, ... However, exchanges via e-mail is a bit
immaterial and maybe not fully satisfactory as the “everyday life” of an organisation!

We have thought of trying to organise concrete projects between the meetings of EWM
which could be smaller scale meetings around a specific topic involving a few members of
EWM interested in the topic.

A first attempt in that direction is an interdisciplinary workshop on “Renormalisation in
Mathematics and Physics” (of which you will find an announcement here) which will take
place in Paris. The idea of the topic of this workshop came up during the EWM meeting
in Madrid where spontaneous discussions arose as to the different interpretations of the
notion of renormalisation, a concept which was mentioned in various talks (in the field of
statistical physics, of complex dynamical systems, of quantum field theory) in the course of
the conference.

Such meetings between the general international meetings of EWM are a step towards a
more concrete “everyday life” of the organisation!
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Renormalisation in Mathematics and Physics
Paris, June 14 and 15, 1996

Preliminary announcement

The purpose of this workshop is to study the various interpretations of renormalisation
in dynamical systems, statistical physics, and quantum field theory, and to explore the con-
nections among them. Preliminary discussions on this subject took place at the last EWM
meeting in Madrid in September 1995.

The workshop, a small scale two day meeting, will consist of four sessions, two each day,
each session having at most two talks. Each session will include ample time for discussion by
the participants of the various manifestations of renormalisation.

Abstracts of the talks should be available at the workshop and more detailed proceedings
of the workshop, including the discussions and additional comments by the speakers, will be
available afterwards.

Location. Institut Henri Poincaré, Paris, France (where femmes et mathématiques has its
office). Accomodations will be organised depending on the number of participants (either in
private homes or in a student hall).

Programme

Friday session
morning session: Renormalisation in dynamical systems(I)
speakers: Laura Tedeschini-Lalli (Rome), Betta Scoppola (Rome)
afternoon session: Renormalisation in dynamical systems (II)
speaker: Niria Fagella (Barcelona)

Saturday session
morning session:Renormalisation in statistical physics and quantum field theory
speaker:Annick Lesne (Paris)
afternoon session: Extension of the notion of renormalisation to infinite dimensional ge-
ometry
speaker: Sylvie Paycha (Clermont- Ferrand)

Other speakers will be announced later on

Scientific committee
Brodil Branner, Lyngby, Denmark
Laura Tedeschini-Lalli, Rome, Italy
Sylvie Paycha, Clermont-Ferrand, France

Organising committee
Colette Guillopé (Créteil, chairperson of femmes et mathématiques)
Sylvie Paycha (Clermont-Ferrand, convenor for EWM)

For further information, please contact Sylvie Paycha at:
paycha@ucfma.univ-bpclermont.fr
tel:(33) 73 40 74 42
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Fe-mail /E-mail discussion
Report by Sylvie Paycha and Capi Corrales
Based on notes taken by Ute Burger and Antje Petersen

The use of e-mail as a mean of communication between mathematicians is now wide spread
around the world. As a new way of exchanging information and ideas, it can have some impact
on how the mathematical community functions. We felt it was time for us to talk about the
assets and draw-backs of such a mean of communication, and more specifically for women
mathematicians.

Time for discussion was short and at this stage we can only formulate a few questions
around this topic which we hope will lead to further discussions on and use of e(fe)-mail!

e What is the status of the language used in an e-mail message?

It seems to be neither spoken nor written, but something in between. This “in between”
status has the draw-back that it can lead to very abrupt messages (like “No!” as an
answer to a question), if the person who sends the message does not feel the need to
write a few words of introduction as one otherwise would in written form. In this sense
it can sometimes be felt as an unpleasant (although fast) mean of communication. On
the other hand, people sometimes feel free to suggest an idea in an e-mail message that
is not yet “ripe” enough to be formulated in usual written form but which is still worth
sending by e-mail. This leads to the second question:

e Does “e-mail” modify the way mathematics are “done”?

New ideas can be exchanged rapidly by e-mail even if they are still in the process of
being elaborated. They can therefore be elaborated in collaboration; a deep idea can
come from many ideas (even if superficial) suggested by many people. The notion of
“authorship” (which was and still is so important for recognition in the mathematical
community) for one idea might gradually loose its meaning because of this superposi-
tion of ideas coming from different people. But what if one is not in a discussion or
information network and cannot participate in this “common” elaboration of ideas ?

e What about exclusion phenomena via e-mail ?
An e-malil discussion or information net grows fast but it can easily happen that one
does not benefit from it by lack of information or because one does not have access to
computers on which one can enter these nets. Since a lot of information mathemati-
cians use nowadays transits through these means of communication, there is a clear
segregation between mathematicians who use these nets and the others, who for some
reason or other, are excluded from them.

¢ What about women mathematicians and e-mail?
Which among the advantages/draw-backs mentioned above of this new mean of commu-
nication benefit to/disadvantage women mathematicians ? Do women mathematicians
have in actual facts less access to it, do they use it less and why 7 Some concrete
suggestions came up during this informal discussion, such as

— to organise a technical workshop during the next general EWM meeting to make
women more familiar with the possibilities of the internet,

— that Riitta Ulmanen could write a manual about how to make the best use of e-mail

within EWM.
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Mathematical studies at European universities
Magdalena Jaroszewska

Adam Mickiewsicz University, Poland

Data enclosed in this paper have come partly from information booklets and partly from
direct communication with teachers and students of a number of European universities.

The European universities began to develop in the 12th century, the first ones stem-
ming from monastery schools. In spite of numerous transformations they still preserve their
traditional medieval organization and status, including divisions into faculties, structure of
authorities, autonomous management. Some of the oldest universities established in 12th -
14th centuries are Bologna, Paris, Oxford, Cambridge, Parma, Salamanca, Valencia, Padoa,
Naples, Rome, Prague, Cracow, Vienna, Heidelberg, Kéln and Barcelona. The Sorbonne in
Paris provided the university organizational pattern for other universities.

In our days there are numerous new scientific disciplines under development which in-
creases demand for highly qualified specialists. The university graduate should have broad
general education and also be well prepared for highly specialized professional career. How
to balance the two aims, i.e. broad horizons and good professional training, in education of
students? This goal poses still difficult problems for people and institutions responsible for
education.

Quite recently, extensive political and social changes have been taking place in Europe.
Students of today may choose place for studies practically all over Europe. Also the univer-
sities are changing in many ways, responding to market rules and economic pressures of the
new Europe. The academic world tends to show a more elastic approach both in admission
of students and in programs, offering the students the chance to choose more freely their own
line of studies.

The system of university studies differs quite distinctly in different countries and even
between universities in the same country.

Most often, the students start the studies at the age of 18 - 19 years. The studies are
performed at most of the universities in three stages, corresponding to the degrees of Bachelor
of Science, Master of Science and Ph.D., respectively. The duration corresponding to these
stages differ quite significantly.

The first stage of mathematical studies lasts two to four years during which the student
acquires basic education. The principal subject, mathematics, is frequently accompanied by
another one like physics, informatics, economy, psychology.

The second stage lasts one to three years. The studies are more specialized and the
individual work of the students is emphasized. Most students end their formal education
after this stage.

The third stage, Ph.D. studies, is undertaken in general by few students. Each of the
students remain under care of a promotor of his/her choice and is given a subject for scientific
work, usually within a specialized branch. As a rule, the students have to pass some exams
at this stage, but their principal aim is to present a paper containing some new own results.
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Let us look at some of the countries.

BELGIUM. Mathematical studies take 4 years and the first diploma - of the Candidature
or Baccalaureate - is granted after the first two years. The diploma carries no practical
significance. After 4 years of studies the student receives the Licence Diploma which is
accepted at the labor market.

DENMARK. Mathematical studies are often combined with some other subject like in-
formatics, physics, statistics. After 3 years the students receives B.Sci. degree and, after
another two years the degree of Candidatura Scientiarum, corresponding to Master degree.
A Ph.D. degree consists of a Master degree followed by a 3 year research training program. In
Denmark, there are several universities with alternative organisation of studies. At Roskilde
University, for example, all degree courses commence with a two year basic studies program.
The basic studies program is a broad introduction to the humanities, the social sciences or
the natural sciences.

ENGLAND. The first three years-long stage provides the student with the degree of the
Bachelor of Science. The second stage of 1.5 — 2 years grants the student the title of a Master
of Science. The third stage yields the title of a Philosophy Doctor (Ph.D.) and, in conjunction
with the earlier stages, completes the 6 years studies. During the first three years frequently
only one branch of science is taught while the remaining subjects are treated only marginally.
Some universities, in particular the newer ones, offer a variety of Single Honours, Joint Hon-
ours, Combined Honours. For example, at the University of Birmingham the spectrum of
3—years long studies includes, among other, the following types: Single Honours in — mathe-
matics, pure mathematics, applied mathematics, mathematics and statistics, statistics; Joint
Honours in — mathematics and computer science, mathematics and psychology, mathematics
and sport science; Combined Honours in — mathematics and ancient history, mathemetics
and French studies, mathematics and music, etc.

FRANCE. The first stage of studies takes 2 years and provides the student with the Diplome
d’Etudes Universitaires Generales. In the course of the second two years—long stage La Licence
is granted after the third year and La Maitrise after the fourth year of studies. Ph.D. title
can be obtained after the subject stage, which lasts 3 to 5 years.

FINLAND. After 5 years, the first diploma — Filosofian Kandidaatti and after the next 3
years — Filosofian Tohtori are awarded.

GERMANY. The studies last 4 to 5 years, they lack the first stage and yield no title,
which would correspond to the B.Sci. title. After 4 — 5 years of studies one can get the title
Diplommathematiker(in). The curriculum of studies may include two branches of science,
the principal one, e.g. mathematics, and the accessory one, e.g. chemistry.

HOLLAND. Similarly as in Germany, no title is given which would correspond to B.Sci..
The student is given the title of Doctorandus, an equivalent of M.Sci., after 4 years of studies
and after the subsequent 4 years obtains Ph.D. title.

ITALY. All university studies take usually 4 years. After 4 years, the student receives the
title of Laurea Dottore which corresponds, more or less, to the B.Sci. degree. The next stage
lasts 3 to 5 subsequent years and yields the title of Dottorato di Ricerche (Ph.D.).

NORWAY. The title of Candidates Magistrates can be reached after 3.5 years of studies,
Candidates Scientiarum after further 3 years and Doctor Scientiarum after about 3 more
years.
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POLAND. Until recently the uniform studies lasted 5 years. Now, Polish universities offer
3 to 3.5 years studies yielding the title of Licentiate with the possibility of prolonging them
by another two or three years and obtaining the title of Magister. The curriculum of the 5
years long studies frequently contains the list of subjects required to obtain “in passing” the
title of Licentiate. After 4 more years of studies the title of doctor can be reached.

PORTUGAL. Four years of studies lead to the Licenciatura. After additional 2 years of
studies the student may obtain the title of Mestre and after another 3 to 4 years a Ph.D.degree.

SPAIN. The title Licenciado can be obtained after 5 years and Doctorado after 4 more years.

SWEDEN. The first 3 years of studies lead to the title of Filosofie Kandidat. After 1 — 2
more years of studies the degree of Magister and after subsequent 3 to 4 years — the Ph.D.
degree can be reached.

SWITZERLAND. At some universities, the title Diplomierte Mathematiker(in) can be
reached after 4 to 5 years of studies. After 4 more years, the title Doctor Philosophiae can
be received.

By the years of studies we mean academic years. An academic year for example includes 30
weeks (Poland), 40 weeks (Sweden) or 42 weeks (Holland), organised in either two semesters
or three trimesters. In most countries, the program corresponding to the M.Sci. degree
includes 2.5 to 3 thousands hours of classes, lectures, laboratory exercises and seminars.

Some universities preserves traditional model of studies, in which the student is confronted
with a curriculum, distributing all subjects to individual years with specified terms at which
given credits should be obtained or exams passed. In many countries the point system of
studies is being introduced. To be graduated the student has to collect an adequate number
of credit points for obligatory subjects as well as for optional subjects. For example, at the
University of Amsterdam (UVA) all parts of the 4-year program in M.Sci. studies form
modules of the same size. For the course load of a given module the student receives 7 credit
points. The course load is measured in hours: 1 point = 1 week of studies =5 days x 8 hours
of work = 40 h of work (including about 20 h of classes + 20 h of individual work). One year
of studies = 3 trimesters = 3 x 14 weeks of studies = 42 points. Then 4 years of studies =
168 points. Each subject can provide a defined number of points. At the first year of studies
the so called propedeutic year, all subjects are obligatory. At the year 2, 3, 4 (the so called
doctoraal phase) some subjects in individual specialities are obligatory and some are elective.
The studies are highly individual, the students conciously shape theirs curriculum of studies.

Examination systems differ very strongly. Frequently, the students pass exams after fin-
ishing each course or during the year/semester at which lectures on the subject were given.
In some countries the examination is held after two or more years of studies. In most of
European countries the examination system oscillates between these two extremes. Let us
screen the patterns at some of the countries resp. universities.

DENMARK. Each subject culminates in the form of an exam at the end of semester or
academic year. Interestingly, the examining body includes the lecturer but also an additional
professor.

SCOTLAND. Universities grant degrees with evaluation of the relevant qualifications by
external examiners.
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ENGLAND, Oxford. Students are examined at the end of the first and the third year of
studies. Within a week the students pass 8 written exams, each lasting 3 hours. The exams
test fluency in the material of obligatory subjects, both in the basic and in highly specialized
branches of science.

GERMANY. The students have 2 main exams: Vordiplom—Prufung at the end the second
year of studies and Diplom—Prufung at the end of the fifth year of studies.

PORTUGAL. Knowledge of most basic disciplines is tested by a single written test exam
at the end of each semester. If the student fails at the exam - he/she can correct the result
passing the oral exam.

According to the available information, the first stage of mathematical studies includes
basic subjects common to majority of universities while curricula of mathematical studies
differ a lot between universities at the second stage of the studies.

Almost all universities offer the following program:

e Mathematical analysis : sequences, limits, continuity, derivatives, indefinite and Rie-
mann integrals of functions of one and several variables, curvilinear and surface inte-
grals, ordinary differential equations.

Linear algebra and algebra of basic algebraic structures.

Euclidean and analytic geometry.

Principles of informatics, numerical analysis, probability and statistics.

As evident from the above, European universities differ from each other in mathematical
studies by the system of studies, the ways in which subjects are taught and the exams are
conducted, they grant distinct titles and grades. Only the portion of basic mathematical
knowledge is common to majority of studies curricula at the preliminary years of studies.

The following questions arise:

e Is it purposeful (and possible) to harmonize or standardize curricula of the first years
of studies and to do the same with the granted degrees in the contemporary Europe
with open borders and possibilities of free choice and change of place of studies ?

e [s it possible to define a certain European standard in the range 7

These problems have been discussed at the Round Table of European Congress of Math-
ematics [3].

Suggestions: The first step towards unification is comprehensive information. It would
certainly be very useful if mathematical institutes/faculties could publish information book-
lets in English. The booklets should contain curriculum of mathematical studies. This would
greatly facilitate work and decisions of both students in mathematics and the persons in the
institutes/faculties responsible for education and for student transfers.
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Family versus Career

The activity around the discussion on ‘Family versus Career’ was organized by science
historian Eulalia Pérez Sedefio from Universidad Complutense de Madrid. In the spring of
1995 she formulated a questionnaire which was distributed by EWM. The paper which follows
is her record of the 53 answers which she received.

Eulalia presented the results of her studies at the EWM meeting, following which a lively
discussion took place. Participants emphasized that only a tiny amount of material was
gathered, that no statistical conclusions could be drawn, and that those who answered mainly
represented ‘survivors’ in the mathematical community.

We would like to make quite clear that opinions and conclusions expressed in this paper
do not necessarily agree with those of EWM as an organization or those of its members.
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Family versus Career in Women Mathematicians
Eulalia Pérez Sedeno

Universidad Complutense de Madrid, Spain

For a long time it was claimed that the fact that girls chose less scientific subjects than
boys was reflected in the number of female scientists; and as the number of women studying
sciences is smaller, smaller too is the number of women reaching professional success in
that area. However, today we know that in some countries the global number of women
in university is greater than that of men'!; but there are fewer women studying physics or
mathematics; the distribution of women in the different scientific specialities is unequal.
When women surpass men, as well as when this is not the case, neither the quantity of
professionals corresponds to the quantity of women prepared for this, nor is the distribution
in the different knowledge areas equal; and there is no equality in the positions that men and
women occupy®. Furthermore, a few sociometrical studies seem to show that the scientific
careers developed by men and women are different (Cole [1979] and Zuckerman et al. [1991]).
Why this is the case, is something sociologists and psychologists have attempted to explain
in many various ways.

Many scholars tend to blame partnership and maternity for the fact that women do not
reach, in great quantities, the working market in general and do not access the highest
positions in all the scientific areas ®. The underlying argument proceeds, more or less, in
the following way: the pursuit of a scientific career is a full-time job; women carry the
responsibilities of the household (they take care of the house, children, sick or old people,
etc.). Performing the housewife functions takes a lot of time. For that reason, women either
decide for the family (and thus there are less women than male in these professions) or their
work is resented in terms of their scientific performance and efficiency. That would mean, for
example, that single women would have to progress just as single males. In the same way,
if it is said that marriage and children reduce the productivity of women, we would have to
examine whether married women with children produce less than men in the same situation.
There would have to be differences between married and unmarried women, among women
with children and those without; and in other words, men and women with a similar quantity
and quality of publications would have to have equal status. In fact, few empirical studies
focus on these problems. The few existing studies deal with a few North American women
belonging to various scientific disciplines *, and they suggest the contrary (Zuckerman et
al.[1991]). However, it is continuously asserted that the family is an obstacle to reaching full
equality in science.

The present paper presents the results of a study accomplished through the association
“European Women in Mathematics”. A questionnaire was sent out through its network. It
was intended to analyse educational, professional and economic status of the respondents and
their households of origin; the development of their professional career - year of completion

9This research has been partially supported by Spanish DGICYT, project number PB92-0846-C06-02 and
by the Researchers” Temporary Mobility Program funded by the Spanish Government.

'That is the case in Spain; see Pérez Sedefio [1996].

2See, for instance, Cole[1979], Rossiter[1982] and Pérez Sedefio[1996].

#On territorial and hierarchical discriminations see Rossiter[1982] and Pérez Sedefio[1995].

*See Zuckerman, Cole and Bruer [1991] and Cole [1979]. The study made by Jaiswal [1993] is more extensive
s0 it is based in 158 women and 122 man. But it does not distinguish between different sciences and it is made
in India, a country with a different structure.
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of studies, first job, Ph.D. and publications, if any; the time they devote to domestic tasks,
that is supposedly subtracted from study time and research, and it was intended to examine
too, if differences in the previous factors result in different levels of performance; but also it
claimed to grasp how these women perceive other women mathematicians, how they perceive
themselves, what qualities they consider women mathematicians should have in order to
perform their work, if they feel discriminated against, etc. In short, it was intended to throw
light on some aspects of life of a handful of female mathematicians, so we could understand
as much as possible about their situation and reality, with no vague speculations.

We claim to have obtained informative and qualitative data. We must take into account the
fact that the sample is extremely small. Accordingly, anytime percentages are offered, they
must be understood as merely informative of the situation, opinion etc. of the respondents.
At no time is it intended to make any extrapolation nor generalization about the joint total
of all the European women mathematicians. And moreover it would be ridiculous to do so.
Furthermore, many of the analysed aspects are very difficult to quantify, just as what happens
in the case of sex-based discrimination.

I also have to indicate that, from the point of view of social science, it is very important for
the results that the interviewee does not know what working hypotheses guide the researcher
or what he/she is looking for. Otherwise, their answers can be guided so they can think
of answers that they would not have considered or they can conceal other ones. For that
reason, | attempted to hide the pursued objective. In any case, the particular nature of the
association, and the questionnaire didn’t leave a very wide margin to speculation®.

The questionnaire had both closed and open-ended questions and it was very long; it was
claimed it was directed to women from different countries, at different ages, with different
professional, economical and family situations; and even taking this into account, many
questions had to be obliterated.

We do not know the exact number of women the questionnaire reached, but we estimate
that it was transmitted to some two hundred women. 53 answers were received. The re-
spondents belong to almost all the European countries. In this sense there are only two
notable things: the absence of women mathematicians from the “eastern” countries and from
Ireland, Switzerland, Austria and Greece; furthermore nine respondents live in the U.S. And
in connection with mobility in work, only eight of the respondents work in a country which
is different to their country of origin.

The occupations of these women are in the academic world, as I assumed originally, and 4
students answered too. Also there is one technical writer and one housewife. They describe
their work in a variety of ways: sometimes they are very specific and sometimes they are
very general and vague. The most prevalent activity is the teaching of mathematics (in
compulsory - six to sixteen years old - or upper secondary schools - sixteen to eighteen - , for
undergraduates, graduates or Ph.D. students); this is closely followed by research. But only
7 respondents say they are performing administrative tasks. All of them belong to several
scientific societies, except 2, (the average is to belong to 3-4 societies or working groups).

These women were aged from 21 to 60 years old, and they were distributed in the following
way: 12 women were aged from 51 to 60 years old (Group 1). The so-called Group 2 was
formed by 10 women from 41 to 50 years old. The greatest number of women (Group 3)
were from 31 to 40 years old (22 women, that is to say 41.5%); and only 8 women were

5But some surprising reactions were produced. Many respondents said their partners were mathematicians
too, but a few said that they didn’t believe their partners were interested in answering the questionaire (they
were asked to pas the questionaire to their partners in the case were they were mathematicians too).
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from 21 to 30 years old. In an academic context, and generally in the labouring world, the
age is extremely relevant. With rare exceptions, there is a minimum age at which to begin
university studies, to begin to work and a maximum age to retire. The age is also a frame
of reference with respect to maturity and experience in work. Generally speaking, a greater
service time gives as a result a promotion, a better position and better salaries. This remains
fully confirmed in the case of our respondents, since the proportion of permanent positions
diminishes as age decreases. But it must be emphasized that the global percentage of women
that have obtained permanent or tenured positions in their workplace is very high: 70.58%
6

The socioeconomic background of the respondents’ results is relevant in order to under-
stand their place in the social structure. It also must be taken into account that in traditional
societies, individuals form a part of the family and this shapes them. Because of this, it does
not appear strange to suppose that the fact that women become a member of professions
dominated by men - and mathematics is one of them - is influenced by the sexual role, the
socialization and the upbringing of girls in their families. The education and profession of
the parents, as well as the family income facilitates or hinders the education and profession
of women. Above all, the parents educational level is a very important factor in order to
provide a better education and to select a suitable occupation.

The socioeconomic status of the original households of all these women was quite uniform;
it was middle class, though 18% said they proceeded from a lower middle class home and
18% proceeded from a higher middle class household.

The educational status of fathers in Group 1 is quite uniform too: all of them possess a
high educational level that moreover is superior to the mothers’ one: 66.6% of fathers had
university degrees, and a third of them had a Ph.D.; concerning the mothers, only 25% had
a university degree, and another 25% had attended high school. The fathers’ professions
are varied, but 41.6% were university teachers; also there were attorneys, engineers, etc.
Curiously, in this group only two mothers did not work; and the professions of the rest of
the mothers were varied, although a third of them are teachers. Fathers from Group 2 had
a high educational status: only Group 3 fathers did not possess university studies; half of
the mothers did not have university degrees or similar education. In relation to fathers’
professions the academic ones were numerous, and the rest of the fathers were business men,
farmers or architects. Four mothers, out of the total (10), did not work; the professions of
the others were: architects, psychoanalysts, business or mathematics teachers. In Group 3,
just three fathers didn’t have university education and seven fathers had a Ph.D.; engineers,
architects and teachers with scientific training, and especially mathematical knowledge, were
numerous. Regarding the mothers, 27.2% were housewives; the rest were distributed among
different professions, but teaching was the most common (36%). Finally, parents in Group
4 were the most assorted economically, educationally and professionally. Although just 8
women make up this group, all the economic situations of the questionnaire appear; and in
connection with the educational status, three fathers have university education and there is
just one (mathematics) teacher, the rest of the professions varies. The educational status
of the mothers in this group is slightly superior to the fathers’ one: 5 obtained university
degrees and two high school degrees. There are three teachers, two administrative officers, a
secretary, a banker and only one housewife.

Marriage or partnership and the children, if any, and the time these women devote to
the household are very important in this research, as we can learn how their family situation

5Men who answered the questionaire are not included here.
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affects or has affected their professional performance or efficiency. In order to measure profes-
sional performance four factors have been used: the year of completion of the undergraduate
degree, the year they obtained their Ph.D. degree, the year they began to work (remunerated
work) and the number of publications .

Marriage or partnership® provides a new status to individuals. It usually confers new
roles and positions: on one hand, society expects, as a minimum, that households as well
as the upbringing of children and care of older family members, if any, shall be the domain
of women; additionally, the position the household occupies in society tends to sum up the
status of both members of the couple®. All women in Group 1 have or have had a partner.
Generally they obtained a partner late, supposedly after having established their professional
career, in a certain way. Just two of them obtained a partner before the age of 24 and
just one was a student. All the partners of these women have obtained a university degree
in science, for the most part mathematics or related subjects; we do not know about two
of them since this information was not given to us. In Group 2, all women have or have
had partners. Four women had their first partner when they were less than 25 years old.
Mathematicians or persons with strong mathematical training, such as engineers, economists,
and so on, are numerous among the partners of this group. In any case all of them have a
university education, except one (where information was not given). Group 3 was composed
of 22 women, and just five of them have not, or have not had, partners. Nine women
obtained partners before they were 25 years old. All the women with partner, except two, had
formal relationships with scientifically trained people (mathematicians, engineers, computer
scientists, etc.). Finally, in Group 4 only four women have a partner: 2 of them obtained
partner before the age of 25, the other two women later. Regarding the educational or
professional status, three partners in Group 3 have scientific training and 1 is a travel agent.

Previous data show almost total congruency in educational and professional status among
the couples. Such a fact supports the conjecture that, in our current society, such congruency
is a very important variable in the vital situation of an individual. That congruency affects the
lifestyle, the couples’ behaviour and adjustment; it also provides stability and psychological
reward. Nonetheless it is worth emphasizing that some women state that their partner has
been one of the most principal obstacles they have found in the development of their career.

We can examine to what extent family situation affects the professional and scientific
performance or efficiency in these women. In Group 1, women finished their graduate studies
from 21 to 24 years old. All these women began to work from 20 to 24 years, except 2: one
began when she was thirty years old (before she was married and had children) and the other
when she was thirty seven years old, (17 years after her marriage and 11 after having her last
child). Just two women did not have children and four had the first before they were thirty
years old. That is to say, in this group 66.6% of women with children were “older” mothers,
that is, when they were thirty years old or more. These children went to school when they
were six or seven years old (just four children began school before).

However, neither partnership nor maternity have affected the performance or efficiency of
these women, against what is many times claimed. Just one woman resigned from a tenured
position to be devoted to her children, but the rest continued working after marriage and

"I am aware of problems implied by using these factors. For instance, some respondents have not finished
their graduate studies yet; others spent so much time teaching that they can scarcely publish. And, concerning
motivation, I am aware too that some questions would have to be asked.

8] am referring to heterosexual partnership; the homosexual one varies as it does social permissiveness.

?We must take into account that, in most countries, women loose their maiden name and they go on to be
called by their husbands’ names, that is to say, in a sense, their previous identity disappears.
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children. Seven obtained their Ph.D. after having their first child and when at least one
child was not going to school yet. Just in one case does the first childbirth and doctorate
coincide. In relation to women with no children (just two), it does not seem they have had
better performance than the other ones. Even though one of them obtained her Ph.D. and
published her first paper by the time she was 25 years old, the other obtained her Ph.D.
at twenty nine and published her first paper at thirty seven; this is not meaningful, since
there are Ph.D. women at twenty four, twenty eight and twenty nine when they already
had children. Concerning publications of women with children (and the subsequent pace of
publication) they do not seem to be affected negatively by marriage or children: only one of
them published for the first time when her youngest child was 11 years old.

In Group 2 all women finished their graduate studies between the ages 21 and 23: just
one of them interrupted her university studies because of maternity and she finished some
years later. They started to work at a slightly different age: just one at 23, seven from 24
to 28 and two when they were more than 30 years old. The seven women with a Ph.D.
obtained the doctorate at similar ages: from 25 to 30. Although all had children much after
their doctorate, their motherhood did not influence their scientific performance: all of them
continued publishing at the same pace, and even to a greater pace, after having children.
Just one published at forty two for the first time, much after her youngest child had begun
to go to school. There does not seem to be a meaningful difference between those women
and those who do not have children (three) in relation to their first publications: one of them
started to publish at 26, one at 28 and the third at 40.

The trajectory in the university of women in Group 3 is standard too. Most of them
started to work when they were between 24 and 30 years old, but one began at 22 and 3 from
30 to 33 years (and two of these do not have children). Thirteen women did not have children
and twelve of them obtained their Ph.D. From nine women with children, eight have a Ph.D.
; and six of these mothers obtained their Ph.D. after having had their first baby and when at
least one child was not going to school yet. The quantity and pace of publications does not
vary because of marriage or maternity in most cases, as the average of publications of women
with children is superior to that of women without children. Of course this must be taken
with caution, since some respondents (4) have not answered this part of the questionnaire
or they have answered partially. The analysis of the situation of the last group is not very
informative, as no one has published, just two have obtained a Ph.D. and just one has a son.

The dedication to the tasks of the household varies among the people polled: from 28
hours per week that some women reveal until 0 hours that other ones assert. There is no
difference between women living alone and women with a partner or family: 10 hours as a
weekly average. Most interesting is how much time each member of the couple devotes to
domestic work: in Group 1, five women say they spend the same amount of time as their
partners, but three claim they spend more time than them on these tasks. In Group 2 just
one spends the same amount of time as her partner, another one spends less time than her
partner and in the rest of the cases they spend more time on household tasks than their
partners. In Group 3, one woman asserts her partner spends more time on housework than
she does, but the quantity of couples in which women do more household work than their
partners is equal to couples in which the work is distributed in a similar way. Finally, in
Group 4 all women answered they spent more time on household work than their partners.

All these women work in a masculine context; that is to say, in their workplace more men
than women work and those male colleagues exercise control over greater number of persons
(usually students). Mainly, they feel they are equally treated to their male colleagues in terms
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of salary and promotion (67 %) and responsibilities (60 %). But five women have a higher
qualification, needed in order to perform their work and they could occupy superior positions,
that is to say, they are underemployed. And the number of women that feel undervalued is
very similar to those which feel themselves to be equally valued. In relation to the rest of the
women, 87.1 % of the respondents think there are more women undervalued than men and

73.2 % of the respondents think that there are more overvalued men than women'0.

We can classify the support and the opportunities they have found in their career in
two types: personal/intellectual and economic. In the first kind it should be emphasized
that twenty respondents admitted having had a male counsellor, 2 a female counsellor and
one respondent had both male and female counsellors. And some of the answers were “Meet
interesting people”, “enjoy mathematics”, “invitation to collaborate on a problem”, “support
from colleagues and husband”, “general interest”, “ability to talk to others”, “meeting people
who have encouraged me”, “many excellent programs to develop teaching methods”. In
relation to the second kind, scholarships or grants are the most cited items. The fact that
their advisor helped them to find their first job, “opportunity to work as an assistant”,
“sabbatical periods”, etc. are quoted too. It must be emphasized that only two women refer
to programs for promoting women.

The answers concerning the obstacles they met in their careers are also varied, but family is
the most quoted. When they say “family” they mean balancing between family and profession
or to have to decide between family and career. And obstacles directly related to their
sex are numerous: “Sexual and sex-based harassment”, “most of the time the fact I am a
woman”, “some male colleagues resent my efforts to hire and retain women in the faculty”,
“bad rumours”, “men were preferred in positions”, “family problems”, “partner’s competitive
relation to my career”, “women who discourage other women, having to justify how much
I contributed in joint publications”. “Very rare opportunities for promotion” and “blatant
discrimination” can be understood as sex-related too. However, there are many more: lack
of people to talk to for research, loneliness, isolation in my department, (“which it is not
deliberated to you by the men”, one adds), incompetent advisors or lack of strong counsellors,
lack of support from pure mathematics colleagues in the department, academic attitude
towards teaching versus research, teaching looked down upon, time, not available positions,

political corruption, favoritism and incompetent decisions at departmental level, and so on'!.

These few pages express a brief summary of the results of the questionnaire. I am aware
of many things that are obliterated, but other aspects have come to the light. Some of them
can be object of reflection by the association itself'?. But many can be a matter of general
thinking.

Social scientists don’t agree on a unique definition of discrimination. The variance in their
definitions reveals the different points of view in discriminatory behaviour scholars (Cole
[1979]). And on sex discrimination the differences are great. The traditional concept of
women, the socialization process of the girls and the social accepted position of women in
family life seem indicate that women performance would have to go in a certain direction. But
the results of the questionnaire show that pregnancies, upbringing babies, publications, Ph.D.,
positions, and so on are interwoven. And the result of the questionnaire says too that there are
not meaningful differences with respect to the age at which single and married women, women

10 Just one respondent said that there are more overvalued women.

"Many of these obstacles could be adduced by other academicians or scientists.

2For instance, there are few young female mathematicians. These can be because the foundational charac-
teristics of the association. But it can be because the educational status of the household origin.
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with children and without, obtain their Ph.D. and their positions, or when they publish.
Usually these women have to adjust their career and their family, and, nevertheless, they
obtain their Ph.D., positions and publish. So we can conclude that the unequal participation
of women in mathematics has to proceed from cultural and social structured norms and values,
not because they decide for family nor by their intellectual and academic achievements. 1
know that many of us presumed this assertion. But now, we have these data on our hands.
And perhaps this paper can illustrate how science works as a social system and how science
rewards women’s participation in a male-dominated world. Perhaps we can learn from it that
values and interests form part of science too.
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