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Introduction
The human mind has long contemplated the problem of
solving cubic equations
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A quatrain from Rubaiyat of Omar Khayyam, (translator:
Edward Fitzgerald)
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A quatrain from Rubaiyat of Omar Khayyam, (translator:
Edward Fitzgerald)
"The Moving Finger writes: and, having writ,
Moves on: nor all thy Piety nor Wit
Shall lure it back to cancel half of it
Nor all thy Tears wash out a Word of it."
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A quatrain from Rubaiyat of Omar Khayyam, (translator:
Edward Fitzgerald)
"The Moving Finger writes: and, having writ,
Moves on: nor all thy Piety nor Wit
Shall lure it back to cancel half of it
Nor all thy Tears wash out a Word of it."
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Khayyam
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Omar Khayyam was also an astronomer and
mathematician of repute, and is known for his geometric
solution of cubic equations.
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solution of cubic equations.
Around the 17th century, elliptic integrals arose in the study
of arc lengths of an ellipse.
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Omar Khayyam was also an astronomer and
mathematician of repute, and is known for his geometric
solution of cubic equations.
Around the 17th century, elliptic integrals arose in the study
of arc lengths of an ellipse.
Associated to this closely was the study of elliptic functions

studied by Euler, Legendre, Abel, Jacobi...
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Euler
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Of particular interest and relevance here are equations of
the form

E : y2 = f(x),

where f(x) ∈ Q[x] is a cubic with distict roots;
• Q : Field of rational numbers.
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Of particular interest and relevance here are equations of
the form

E : y2 = f(x),

where f(x) ∈ Q[x] is a cubic with distict roots;
• Q : Field of rational numbers.
Example: y2 = x3 − x

Viewed as a plane curve, its set of real points looks like

Old and New themes in Number Theory – p.7/38



E is then an elliptic curve; these are curves of genus one.
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E is then an elliptic curve; these are curves of genus one.
Its solution set E(Q), consisting of pairs (x, y) with x, y in Q,
together with the point at ∞ has an abelian group structure.
More generally true that the set of F -rational points, E(F ),
is an abelian group for any field F .
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E is then an elliptic curve; these are curves of genus one.
Its solution set E(Q), consisting of pairs (x, y) with x, y in Q,
together with the point at ∞ has an abelian group structure.
More generally true that the set of F -rational points, E(F ),
is an abelian group for any field F .

Problems related to elliptic curves were however studied in
a different context from around the 10th century as we shall
see below.
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Mordell-Weil theorem
Theorem: For any finite field extension F of Q, the group
E(F ) is a finitely generated abelian group.
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Mordell-Weil theorem
Theorem: For any finite field extension F of Q, the group
E(F ) is a finitely generated abelian group.
• In particular, E(F ) ' Zg(E/F )⊕ finite group
g(E/F )=rank of E/F , an arithmetic invariant.
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Mordell-Weil theorem
Theorem: For any finite field extension F of Q, the group
E(F ) is a finitely generated abelian group.
• In particular, E(F ) ' Zg(E/F )⊕ finite group
g(E/F )=rank of E/F , an arithmetic invariant.

A deep conjecture due to Birch and Swinnerton-Dyer (BSD)
predicts that g(E/F ) is equal to the order of a conjecturally
analytic function L(E/F, s) at s = 1.
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Main topic today: Iwasawa theory; relatively modern
(1960’s).
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Main topic today: Iwasawa theory; relatively modern
(1960’s).
Iwasawa theory uses p-adic techniques to bring together
the following three different strands of Mathematics with
elliptic curves occurring as a common motif:
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Main topic today: Iwasawa theory; relatively modern
(1960’s).
Iwasawa theory uses p-adic techniques to bring together
the following three different strands of Mathematics with
elliptic curves occurring as a common motif:
• (i) Age old arithmetic problems
• (ii) special values of complex zeta and L-functions

• (iii) Algebraic questions concerned with study of modules
over Iwasawa algebras of compact p-adic Lie groups
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The still largely conjectural connection between (i) and (ii) is
one of the greatest mysteries of mathematics
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The still largely conjectural connection between (i) and (ii) is
one of the greatest mysteries of mathematics
Epitomised by the Birch and Swinnerton-Dyer (BSD)
conjecture
But it goes back to work of Dirichlet (1830’s), Kummer
(1840’s).

Important milestone: Work of Andrew Wiles (mid 1990’s)
and others, leading to the proof of modularity of elliptic
curves over Q and consequently a proof of Fermat’s last
theorem.
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Connection between (ii) and (iii): loosely goes under the
rubric of Main Conjectures
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rubric of Main Conjectures
In the case of Cyclotomic fields, discovered by Iwasawa;
all subsequent work grew out of this.
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In the case of Cyclotomic fields, discovered by Iwasawa;
all subsequent work grew out of this.
A general formulation of the Main Conjecture leads
naturally to questions about noncommutative algebras,
arising from compact p-adic Lie groups; first studied in the
seminal paper of M.Lazard (1960’s).

We shall discuss some aspects of these inter-relationships.
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Arithmetic problems and L-functions

We shall illustrate the connection between (i) and (ii),
related to exact formulae by examples, in their simplest
form and in the historical order of their discovery.
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Arithmetic problems and L-functions

We shall illustrate the connection between (i) and (ii),
related to exact formulae by examples, in their simplest
form and in the historical order of their discovery.
(a) Congruent Number Problem
• Over a 1000 years old; arguably the oldest major
unsolved problem in mathematics

Definition: An integer N > 1 is congruent if N is the area of a
right angled triangle, all of whose sides have rational length.
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Example: 5,6,7,13,14,15,21,22,23,29,30,31,34..... are
congruent numbers
• 5 = Area of right angled triangle with sides (9/6,40/6,41/6)
• 6 = Area of right angled triangle with sides (3,4,5).
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Example: 5,6,7,13,14,15,21,22,23,29,30,31,34..... are
congruent numbers
• 5 = Area of right angled triangle with sides (9/6,40/6,41/6)
• 6 = Area of right angled triangle with sides (3,4,5).
• The proof that 1 is not congruent is due to Fermat and
uses his beautiful principle of infinite descent
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uses his beautiful principle of infinite descent

Despite overwhelming numerical evidence, the following
conjecture is still open.
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Example: 5,6,7,13,14,15,21,22,23,29,30,31,34..... are
congruent numbers
• 5 = Area of right angled triangle with sides (9/6,40/6,41/6)
• 6 = Area of right angled triangle with sides (3,4,5).
• The proof that 1 is not congruent is due to Fermat and
uses his beautiful principle of infinite descent

Despite overwhelming numerical evidence, the following
conjecture is still open.
Conjecture: Every integer N > 1 with N ≡ 5, 6, 7 mod 8 is
congruent.
Surprisingly, this is really a problem about elliptic curves
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• Congruent number problem for an integer N > 1 leads
very naturally to studying elliptic curves of the form
E : y2 = x3 − N2x.
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• Congruent number problem for an integer N > 1 leads
very naturally to studying elliptic curves of the form
E : y2 = x3 − N2x.

Lemma: The integer N is congruent ⇔ there is a point (x, y)
on E with x, y rational and y non-zero.
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Tate-Shafarevich group
CNP is the simplest example of the BSD conjecture, as we
shall explain later.
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Tate-Shafarevich group
CNP is the simplest example of the BSD conjecture, as we
shall explain later.
There is a group that arises naturally in the study of elliptic
curves over Q, namely the Shafarevich-Tate group, denoted
tt (E/Q), defined by

tt (E/Q) = Ker(H1(Q, E(Q̄)) →
∏

p

H1(Qp, E(Q̄p))).
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Tate-Shafarevich group
CNP is the simplest example of the BSD conjecture, as we
shall explain later.
There is a group that arises naturally in the study of elliptic
curves over Q, namely the Shafarevich-Tate group, denoted
tt (E/Q), defined by

tt (E/Q) = Ker(H1(Q, E(Q̄)) →
∏

p

H1(Qp, E(Q̄p))).

• This group parametrizes some curves defined over Q that
become isomorphic to the given elliptic curve E over exten-
sion fields of Q
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• The Tate-Shafarevich group is among the most
mysterious groups occurring in mathematics!
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• The Tate-Shafarevich group is among the most
mysterious groups occurring in mathematics!
• Part of the BSD conjecture is that it is always finite, and
the conjecture gives an exact formula for its order.
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• The Tate-Shafarevich group is among the most
mysterious groups occurring in mathematics!
• Part of the BSD conjecture is that it is always finite, and
the conjecture gives an exact formula for its order.

• Numerically it is extremely difficult to calculate, but the BSD
formula shows numerically that its order is remarkably small.
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Iwasawa theory enables one to prove the following:
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Iwasawa theory enables one to prove the following:
Theorem: Assume N ≡ 5, 6, 7 mod 8. If the p-primary
torsion part tt E/Q(p) is finite for some prime p, then N is
congruent.
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Iwasawa theory enables one to prove the following:
Theorem: Assume N ≡ 5, 6, 7 mod 8. If the p-primary
torsion part tt E/Q(p) is finite for some prime p, then N is
congruent.

We now turn to the next example in cyclotomic fields, due to
Kummer.
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Cyclotomic fields
• p an odd prime number, K = Q(µp), where µp is the group
of p-th roots of unity viz. {x ∈ C | xp = 1}.
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Cyclotomic fields
• p an odd prime number, K = Q(µp), where µp is the group
of p-th roots of unity viz. {x ∈ C | xp = 1}.

• ζ(s) : Riemann zeta function defined as ∑
n≥1

1/ns, where s

is a complex variable.
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Cyclotomic fields
• p an odd prime number, K = Q(µp), where µp is the group
of p-th roots of unity viz. {x ∈ C | xp = 1}.

• ζ(s) : Riemann zeta function defined as ∑
n≥1

1/ns, where s

is a complex variable.
• ζ(−k) ∈ Q, (k = 1, 3, 5, ...); ζ(−k) = −Bk+1/(k + 1), where
Bk+1 is the (k + 1)-th Bernoulli number.
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Cyclotomic fields
• p an odd prime number, K = Q(µp), where µp is the group
of p-th roots of unity viz. {x ∈ C | xp = 1}.

• ζ(s) : Riemann zeta function defined as ∑
n≥1

1/ns, where s

is a complex variable.
• ζ(−k) ∈ Q, (k = 1, 3, 5, ...); ζ(−k) = −Bk+1/(k + 1), where
Bk+1 is the (k + 1)-th Bernoulli number.

The class group of K is an arithmetic invariant attached to K,
defined as the group of fractional ideals of the ring of inte-
gers in K modulo the principal ideals.
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(b):Kummer’s criterion
Theorem: (Kummer) The prime p divides the class number
of K ⇔ p divides the numerator of at least one of
ζ(−1), ζ(−2), · · · , ζ(4 − p).
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(b):Kummer’s criterion
Theorem: (Kummer) The prime p divides the class number
of K ⇔ p divides the numerator of at least one of
ζ(−1), ζ(−2), · · · , ζ(4 − p).

Example: ζ(−11) = 691/32760; hence the prime 691 divides
the class number of Q(µ691).
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(b):Kummer’s criterion
Theorem: (Kummer) The prime p divides the class number
of K ⇔ p divides the numerator of at least one of
ζ(−1), ζ(−2), · · · , ζ(4 − p).

Example: ζ(−11) = 691/32760; hence the prime 691 divides
the class number of Q(µ691).

• Kummer’s criterion thus relates an arithmetic object
namely the class group, to an analytic object, namely the
special values of the Riemann zeta function.
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(b):Kummer’s criterion
Theorem: (Kummer) The prime p divides the class number
of K ⇔ p divides the numerator of at least one of
ζ(−1), ζ(−2), · · · , ζ(4 − p).

Example: ζ(−11) = 691/32760; hence the prime 691 divides
the class number of Q(µ691).

• Kummer’s criterion thus relates an arithmetic object
namely the class group, to an analytic object, namely the
special values of the Riemann zeta function.

The class group has a superficial analogy with the Tate-
Shafarevich group.
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We now come to our final example.
(c): Elliptic curves and the BSD conjecture
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a natural generalization of the Riemann zeta function
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We now come to our final example.
(c): Elliptic curves and the BSD conjecture
E/Q an elliptic curve; the Hasse-Weil L-function, L(E, s) is
a natural generalization of the Riemann zeta function
• Defined using the integers ap := p + 1 − #E(Fp), the
number of points of E over the finite fields Fp, as p varies
over the prime numbers.
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We now come to our final example.
(c): Elliptic curves and the BSD conjecture
E/Q an elliptic curve; the Hasse-Weil L-function, L(E, s) is
a natural generalization of the Riemann zeta function
• Defined using the integers ap := p + 1 − #E(Fp), the
number of points of E over the finite fields Fp, as p varies
over the prime numbers.
• Euler product expression
L(E, s) =

∏
p

(1 − app
−s + (p1−2s))−1, Re(s)> 3/2

• Dirichlet series expression L(E, s) =
∑∞

n=0 an/ns.

Old and New themes in Number Theory – p.21/38



We now come to our final example.
(c): Elliptic curves and the BSD conjecture
E/Q an elliptic curve; the Hasse-Weil L-function, L(E, s) is
a natural generalization of the Riemann zeta function
• Defined using the integers ap := p + 1 − #E(Fp), the
number of points of E over the finite fields Fp, as p varies
over the prime numbers.
• Euler product expression
L(E, s) =

∏
p

(1 − app
−s + (p1−2s))−1, Re(s)> 3/2

• Dirichlet series expression L(E, s) =
∑∞

n=0 an/ns.

A deep and important result is that L(E, s) has an analytic
continuation to the whole complex plane.
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Birch and Swinnerton-Dyer conjecture
Conjecture: The rank g(E/Q) = order of vanishing of L(E, s)
at s = 1.
In particular, E(Q) is infinite ⇔ L(E, s) vanishes at s = 1.
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Birch and Swinnerton-Dyer conjecture
Conjecture: The rank g(E/Q) = order of vanishing of L(E, s)
at s = 1.
In particular, E(Q) is infinite ⇔ L(E, s) vanishes at s = 1.
• BSD conjecture even gives an exact formula for the
leading coefficient of L(E, s) at s = 1.
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Birch and Swinnerton-Dyer conjecture
Conjecture: The rank g(E/Q) = order of vanishing of L(E, s)
at s = 1.
In particular, E(Q) is infinite ⇔ L(E, s) vanishes at s = 1.
• BSD conjecture even gives an exact formula for the
leading coefficient of L(E, s) at s = 1.
• Extraordinary link between arithmetic objects and analytic
objects.
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Birch and Swinnerton-Dyer conjecture
Conjecture: The rank g(E/Q) = order of vanishing of L(E, s)
at s = 1.
In particular, E(Q) is infinite ⇔ L(E, s) vanishes at s = 1.
• BSD conjecture even gives an exact formula for the
leading coefficient of L(E, s) at s = 1.
• Extraordinary link between arithmetic objects and analytic
objects.

For the CNP, with N ≡ 5, 6, 7 mod 8, and for the curves E :

y2 = x3 − N2x, the theory of L-functions shows that L(E, s)

has an odd order zero at s = 1.
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Iwasawa theory
• Provides a systematic technique to attack the BSD
conjecture using p-adic methods.
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conjecture using p-adic methods.
• First developed by Iwasawa in his study of class groups of
cyclotomic extensions; fully explains the philosophy behind
Kummer’s criterion.
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Iwasawa theory
• Provides a systematic technique to attack the BSD
conjecture using p-adic methods.
• First developed by Iwasawa in his study of class groups of
cyclotomic extensions; fully explains the philosophy behind
Kummer’s criterion.
• Basic Idea: To seek a simple connection between special
values of L-functions and arithmetic over certain infinite
Galois extensions F∞ of Q. This is precisely the content of
the Main Conjecture.
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Iwasawa theory
• Provides a systematic technique to attack the BSD
conjecture using p-adic methods.
• First developed by Iwasawa in his study of class groups of
cyclotomic extensions; fully explains the philosophy behind
Kummer’s criterion.
• Basic Idea: To seek a simple connection between special
values of L-functions and arithmetic over certain infinite
Galois extensions F∞ of Q. This is precisely the content of
the Main Conjecture.

From this perspective, the BSD conjecture seems very nat-
ural; can see how points of infinite order over Q give rise to
a zero of multiplicity g(E/Q), of a p-adic analogue of L(E, s).
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Examples:
(i) F∞ = Q(µp∞) = ∪

n≥0
Q(µpn), obtained by adjoining all the

p-power roots of unity.
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Examples:
(i) F∞ = Q(µp∞) = ∪

n≥0
Q(µpn), obtained by adjoining all the

p-power roots of unity.
(ii) E/Q an elliptic curve; Epn = Epn(Q̄) is the Galois
extension of Q obtained by adjoining the coordinates of the
pn-division points of E; F∞ = ∪

n≥0
F (Epn).
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Examples:
(i) F∞ = Q(µp∞) = ∪

n≥0
Q(µpn), obtained by adjoining all the

p-power roots of unity.
(ii) E/Q an elliptic curve; Epn = Epn(Q̄) is the Galois
extension of Q obtained by adjoining the coordinates of the
pn-division points of E; F∞ = ∪

n≥0
F (Epn).

• G = Gal(F∞/Q); then G is a compact p-adic Lie group.
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In the first example, G = Z×p , the units of the ring of p-adic
integers, isomorphic to Zp × Z/(p − 1).
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In the first example, G = Z×p , the units of the ring of p-adic
integers, isomorphic to Zp × Z/(p − 1).

In (ii), there are two cases:
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In the first example, G = Z×p , the units of the ring of p-adic
integers, isomorphic to Zp × Z/(p − 1).

In (ii), there are two cases:
first if E has complex multiplication, then G ⊃ (Zp × Zp) of
index 2.

If E does not have complex multiplication, then G ' open
subgp of GL2(Zp) (Serre).
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In the first example, G = Z×p , the units of the ring of p-adic
integers, isomorphic to Zp × Z/(p − 1).

In (ii), there are two cases:
first if E has complex multiplication, then G ⊃ (Zp × Zp) of
index 2.

If E does not have complex multiplication, then G ' open
subgp of GL2(Zp) (Serre).
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Iwasawa algebras
G a compact p-adic Lie group.
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Iwasawa algebras
G a compact p-adic Lie group.
The Iwasawa algebra of G, denoted Λ(G) is the completed
group algebra

Λ(G) = lim
←

Zp[G/G′].
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Iwasawa algebras
G a compact p-adic Lie group.
The Iwasawa algebra of G, denoted Λ(G) is the completed
group algebra

Λ(G) = lim
←

Zp[G/G′].

Here G′ runs over open normal subgroups of G and the in-
verse limit is taken with respect to the natural maps of the
corresponding group rings.
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Examples
(i) If G ' Z×p , then Λ(G) ' (p − 1) copies of Zp[[T ]].
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Examples
(i) If G ' Z×p , then Λ(G) ' (p − 1) copies of Zp[[T ]].

(ii) G ' Zd
p, then Λ(G) ' Zp[[T1, · · · , Td]].

When G is commutative, study of modules over Λ(G) is thus
classical.
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(i) If G ' Z×p , then Λ(G) ' (p − 1) copies of Zp[[T ]].

(ii) G ' Zd
p, then Λ(G) ' Zp[[T1, · · · , Td]].

When G is commutative, study of modules over Λ(G) is thus
classical.
(iii) G open subgroup of GLn(Zp); Λ(G) is more
complicated; first investigated by Lazard.
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Examples
(i) If G ' Z×p , then Λ(G) ' (p − 1) copies of Zp[[T ]].

(ii) G ' Zd
p, then Λ(G) ' Zp[[T1, · · · , Td]].

When G is commutative, study of modules over Λ(G) is thus
classical.
(iii) G open subgroup of GLn(Zp); Λ(G) is more
complicated; first investigated by Lazard.
Fact: If G has no elements of order p (eg. p > n + 1 in (iii)),
then Λ(G) is a Noetherian, Auslander regular domain with
finite global dimension.
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Examples
(i) If G ' Z×p , then Λ(G) ' (p − 1) copies of Zp[[T ]].

(ii) G ' Zd
p, then Λ(G) ' Zp[[T1, · · · , Td]].

When G is commutative, study of modules over Λ(G) is thus
classical.
(iii) G open subgroup of GLn(Zp); Λ(G) is more
complicated; first investigated by Lazard.
Fact: If G has no elements of order p (eg. p > n + 1 in (iii)),
then Λ(G) is a Noetherian, Auslander regular domain with
finite global dimension.

This enables one to study modules over Λ(G) quite generally
using techniques from dimension theory and homological al-
gebra.
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Return to Arithmetic
Fundamental idea: Find a module over the Iwasawa
algebra which simultaneously reflects both the arithmetic of
E and the special values of the complex L-function
attached to E.
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Return to Arithmetic
Fundamental idea: Find a module over the Iwasawa
algebra which simultaneously reflects both the arithmetic of
E and the special values of the complex L-function
attached to E.
Classical descent theory tells us what arithmetic module we
should consider over our p-adic Lie extension F∞; namely
the compact Pontryagin dual Xp(E/F∞) of the p- primary
Selmer group of E over F∞.
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Return to Arithmetic
Fundamental idea: Find a module over the Iwasawa
algebra which simultaneously reflects both the arithmetic of
E and the special values of the complex L-function
attached to E.
Classical descent theory tells us what arithmetic module we
should consider over our p-adic Lie extension F∞; namely
the compact Pontryagin dual Xp(E/F∞) of the p- primary
Selmer group of E over F∞.
This is a finitely generated module over the corresponding
Iwasawa algebra Λ(G), with G = Gal(F∞/F ).
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There is an exact sequence of Λ(G)-modules

0 → tt ̂E(F∞)(p) → Xp(E/F∞) → Hom(E(F∞)⊗Zp, Zp) → 0.
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There is an exact sequence of Λ(G)-modules

0 → tt ̂E(F∞)(p) → Xp(E/F∞) → Hom(E(F∞)⊗Zp, Zp) → 0.

• Xp(E/F∞) encodes information on E(F ) and the Tate
Shafarevich group for all finite layers F in F∞.
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There is an exact sequence of Λ(G)-modules

0 → tt ̂E(F∞)(p) → Xp(E/F∞) → Hom(E(F∞)⊗Zp, Zp) → 0.

• Xp(E/F∞) encodes information on E(F ) and the Tate
Shafarevich group for all finite layers F in F∞.
• Its in no way obvious how to even formulate a precise
conjecture relating this module to values of complex
L-functions.
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There is an exact sequence of Λ(G)-modules

0 → tt ̂E(F∞)(p) → Xp(E/F∞) → Hom(E(F∞)⊗Zp, Zp) → 0.

• Xp(E/F∞) encodes information on E(F ) and the Tate
Shafarevich group for all finite layers F in F∞.
• Its in no way obvious how to even formulate a precise
conjecture relating this module to values of complex
L-functions.

This is exactly where the Main Conjecture intervenes.
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Main Conjecture in Iwasawa theory
• Attach an algebraic and analytic invariant to Xp(E/F∞).
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Main Conjecture in Iwasawa theory
• Attach an algebraic and analytic invariant to Xp(E/F∞).
The analytic invariant should p-adically interpolate values of
the complex L-function twisted by Artin characters ρ of
G = Gal(F∞/F ).
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Main Conjecture in Iwasawa theory
• Attach an algebraic and analytic invariant to Xp(E/F∞).
The analytic invariant should p-adically interpolate values of
the complex L-function twisted by Artin characters ρ of
G = Gal(F∞/F ).
More precisely, consider the function ρ 7→ L(E, ρ, 1) ∈ C.
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Main Conjecture in Iwasawa theory
• Attach an algebraic and analytic invariant to Xp(E/F∞).
The analytic invariant should p-adically interpolate values of
the complex L-function twisted by Artin characters ρ of
G = Gal(F∞/F ).
More precisely, consider the function ρ 7→ L(E, ρ, 1) ∈ C.
To view this association p-adically, have to divide the
L-value by the “standard period” Ωρ; then get values in Q̄

and can hence view them in Q̄p.
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Main Conjecture in Iwasawa theory
• Attach an algebraic and analytic invariant to Xp(E/F∞).
The analytic invariant should p-adically interpolate values of
the complex L-function twisted by Artin characters ρ of
G = Gal(F∞/F ).
More precisely, consider the function ρ 7→ L(E, ρ, 1) ∈ C.
To view this association p-adically, have to divide the
L-value by the “standard period” Ωρ; then get values in Q̄

and can hence view them in Q̄p.
• The statement of the Main Conjecture is that these two
invariants are equal.
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• In the classical (abelian) examples (i) and (ii), these
invariants are elements of Λ(G).
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• In the classical (abelian) examples (i) and (ii), these
invariants are elements of Λ(G).
• Associating the algebraic invariant in this case made easy
due the existence of a structure theorem for finitely
generated modules over commutative Iwasawa algebras.
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• In the classical (abelian) examples (i) and (ii), these
invariants are elements of Λ(G).
• Associating the algebraic invariant in this case made easy
due the existence of a structure theorem for finitely
generated modules over commutative Iwasawa algebras.
• Any progress towards the Main conjecture in these cases
(due to Coates-Wiles, Mazur-Wiles, Yager, Rubin,
Kolyvagin, Kato, Skinner-Urban...) has had striking
consequences for the BSD conjecture.

Old and New themes in Number Theory – p.31/38



• In the classical (abelian) examples (i) and (ii), these
invariants are elements of Λ(G).
• Associating the algebraic invariant in this case made easy
due the existence of a structure theorem for finitely
generated modules over commutative Iwasawa algebras.
• Any progress towards the Main conjecture in these cases
(due to Coates-Wiles, Mazur-Wiles, Yager, Rubin,
Kolyvagin, Kato, Skinner-Urban...) has had striking
consequences for the BSD conjecture.
E(Q) infinite ⇒ L(E, 1) = 0.
Assuming tt (E/Q) finite, L(E, 1) = 0 ⇒ E(Q) infinite.
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Noncommutative case
• When G is noncommutative, Λ(G) is noncommutative and
severe complications arise in finding suitable algebraic
invariants.
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Noncommutative case
• When G is noncommutative, Λ(G) is noncommutative and
severe complications arise in finding suitable algebraic
invariants.
• In joint work with Coates and Schneider, we prove an
analogue of the structure theorem for modules over certain
noncommutative Iwasawa algebras.
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Noncommutative case
• When G is noncommutative, Λ(G) is noncommutative and
severe complications arise in finding suitable algebraic
invariants.
• In joint work with Coates and Schneider, we prove an
analogue of the structure theorem for modules over certain
noncommutative Iwasawa algebras.

• Later fromulated a precise Main conjecture for the non-
commutative case in joint work with Coates, Fukaya, Kato
and Venjakob.
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• A novelty in the noncommutative case is the use of
algebraic K-theory; the algebraic and analytic invariants
are elements of K1(R), where R is a noncommutative
localisation of Λ(G).

Old and New themes in Number Theory – p.33/38



• A novelty in the noncommutative case is the use of
algebraic K-theory; the algebraic and analytic invariants
are elements of K1(R), where R is a noncommutative
localisation of Λ(G).
• Existence of an interesting Ore set makes such a
localisation possible.
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• A novelty in the noncommutative case is the use of
algebraic K-theory; the algebraic and analytic invariants
are elements of K1(R), where R is a noncommutative
localisation of Λ(G).
• Existence of an interesting Ore set makes such a
localisation possible.

The noncommutative theory has a richer structure because
of the existence of infinite families of self-dual irreducible
Artin characters of G.
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Applications and Examples
We illustrate these ideas with a simple noncommutative
example;
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Applications and Examples
We illustrate these ideas with a simple noncommutative
example;
Uses recent joint work with Coates, Fukaya, Kato and has
connections with joint work of T.Dokchitser and V.
Dokchitser and that of Rohrlich on root numbers.
Let m be any integer > 1, always assumed p-power free.
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Applications and Examples
We illustrate these ideas with a simple noncommutative
example;
Uses recent joint work with Coates, Fukaya, Kato and has
connections with joint work of T.Dokchitser and V.
Dokchitser and that of Rohrlich on root numbers.
Let m be any integer > 1, always assumed p-power free.
Define

Ln = Q(m1/pn

), Kn = Q(µpn), Fn = Q(µpn,m1/pn

),

F∞ = ∪
n≥0

Fn, G = Gal(F∞/Q).
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example;
Uses recent joint work with Coates, Fukaya, Kato and has
connections with joint work of T.Dokchitser and V.
Dokchitser and that of Rohrlich on root numbers.
Let m be any integer > 1, always assumed p-power free.
Define

Ln = Q(m1/pn

), Kn = Q(µpn), Fn = Q(µpn,m1/pn

),

F∞ = ∪
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Fn, G = Gal(F∞/Q).
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G is noncommutative, isomorphic to the semidirect product
of Z×p and Zp. The extensions Ln are not Galois while Fn

are nonabelian Galois extensions.
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G is noncommutative, isomorphic to the semidirect product
of Z×p and Zp. The extensions Ln are not Galois while Fn

are nonabelian Galois extensions.
Consider the representations
ρn = Ind

Fn/Q
Fn/Kn

κn, where κn is a character of Gal(Fn/Kn) of
exact order pn.
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G is noncommutative, isomorphic to the semidirect product
of Z×p and Zp. The extensions Ln are not Galois while Fn

are nonabelian Galois extensions.
Consider the representations
ρn = Ind

Fn/Q
Fn/Kn

κn, where κn is a character of Gal(Fn/Kn) of
exact order pn. These are self-dual irreducible; every
irreducible self-dual Artin representation of G of dimension
>1 is of this form.
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G is noncommutative, isomorphic to the semidirect product
of Z×p and Zp. The extensions Ln are not Galois while Fn

are nonabelian Galois extensions.
Consider the representations
ρn = Ind

Fn/Q
Fn/Kn

κn, where κn is a character of Gal(Fn/Kn) of
exact order pn. These are self-dual irreducible; every
irreducible self-dual Artin representation of G of dimension
>1 is of this form.

Also known that for an elliptic curve E defined over Q, the
twisted complex L-functions L(E, ρn, s) are entire; this uses
deep results from Automorphic theory.
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Numerical Example: Consider the first elliptic curve
occurring in nature:
E/Q = y2 + y = x3 − x2, conductor=11.
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Numerical Example: Consider the first elliptic curve
occurring in nature:
E/Q = y2 + y = x3 − x2, conductor=11.
The modularity of this curve was discovered in the 19th
century by Fricke-Klein.
Corresponding cusp form of weight 2 for Γ0(11) is

f(τ) = q
∞∏

n=1

(1 − qn)2
∞∏

n=1

(1 − q11n)2, q = e2πiτ .
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Numerical Example: Consider the first elliptic curve
occurring in nature:
E/Q = y2 + y = x3 − x2, conductor=11.
The modularity of this curve was discovered in the 19th
century by Fricke-Klein.
Corresponding cusp form of weight 2 for Γ0(11) is

f(τ) = q
∞∏

n=1

(1 − qn)2
∞∏

n=1

(1 − q11n)2, q = e2πiτ .

This is very similar to other modular forms studied by Ra-
manujan who had different arithmetic questions in mind.

Old and New themes in Number Theory – p.36/38



We illustrate the previous theory for E by taking p = 7.
Recall that Ln = Q(m1/pn

).
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We illustrate the previous theory for E by taking p = 7.
Recall that Ln = Q(m1/pn

).
Theorem: For every m > 1, we have

g(E/Ln) ≥ n, (n = 1, 2, 3 · · · )

provided tt (E/Ln)(7) is finite.
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We illustrate the previous theory for E by taking p = 7.
Recall that Ln = Q(m1/pn

).
Theorem: For every m > 1, we have

g(E/Ln) ≥ n, (n = 1, 2, 3 · · · )

provided tt (E/Ln)(7) is finite.
Even for n = 1, numerically very difficult to find points of
infinite order in E(L1).
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We illustrate the previous theory for E by taking p = 7.
Recall that Ln = Q(m1/pn

).
Theorem: For every m > 1, we have

g(E/Ln) ≥ n, (n = 1, 2, 3 · · · )

provided tt (E/Ln)(7) is finite.
Even for n = 1, numerically very difficult to find points of
infinite order in E(L1).
Surprisingly, Iwasawa theory even gives sometimes an
upper bound for the ranks.
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Theorem: Assume m is any 7-power free integer with prime
factors in the set {2, 3, 7}. Then for all n = 1, 2, 3, · · · , we
have

g(E/Ln) ≤ n

with equality if and only if tt (E/Ln)(7) is finite.

Old and New themes in Number Theory – p.38/38



Theorem: Assume m is any 7-power free integer with prime
factors in the set {2, 3, 7}. Then for all n = 1, 2, 3, · · · , we
have

g(E/Ln) ≤ n

with equality if and only if tt (E/Ln)(7) is finite.
In fact, if BSD holds in the above case, then L(E, ρn, s) has
a zero of order 1 at s = 1 for all n ≥ 1.
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Theorem: Assume m is any 7-power free integer with prime
factors in the set {2, 3, 7}. Then for all n = 1, 2, 3, · · · , we
have

g(E/Ln) ≤ n

with equality if and only if tt (E/Ln)(7) is finite.
In fact, if BSD holds in the above case, then L(E, ρn, s) has
a zero of order 1 at s = 1 for all n ≥ 1.

This example is a special case of a more general theoretical
result on Xp(E/F∞); uses the philosophy of the noncommu-
tative main conjecture.
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