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Permutation groups

Permutation : of set Ω, bijection g : Ω→ Ω
Symmetric group of all permutations of Ω
group Sym (Ω): under composition, for example

g = (1,2) followed by h = (2,3) yields gh = (1,3,2)
g = (1,2,3) has inverse g−1 = (3,2,1) = (1,3,2)

Permutation G ≤ Sym (Ω), that is, subset
group on Ω: closed under inverses and products (compositions)
Example: G = 〈(0,1,2,3,4)〉 < Sym (Ω) on Ω = {0,1,2,3,4}
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Interesting permutation groups occur in:

Graph Theory: Automorphism groups (edge-preserving perm’s)

Geometry: Collineations (line-preserving permutations)

Number Theory and Cryptography: Galois groups, elliptic curves

Differential equations: Measure symmetry - affects nature of so-

lutions

Many applications: basic measure of symmetry
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Regular permutation groups

Permutation group: G ≤ Sym (Ω)
G transitive: all points of Ω equivalent

under elements of G
G regular: ‘smallest possible transitive’ that is

only the identity element of G fixes a point
Example: G = 〈(0,1,2,3,4)〉 on Ω = {0,1,2,3,4}

Alternative view: G = Z5 on Ω = {0,1,2,3,4} by addition
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View of regular permutation groups

Take any: group G, set Ω := G

Define action: ρg : x→ xg for g ∈ G, x ∈ Ω (ρg is bijection)

Form permutation group: GR = {ρg|g ∈ G} ≤ Sym (Ω)

GR
∼= G and GR is regular

5



Visualise regular permutation groups as graphs

Given generating set S: G = 〈S〉 with s ∈ S ⇐⇒ s−1 ∈ S
Define graph: vertex set Ω = G, edges {g, sg} for g ∈ G, s ∈ S

Example: G = Z5, S = {1,4}, obtain Γ = C5, Aut (Γ) = D10.
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These are the Cayley graphs Γ = Cay(G,S)

Always: GR ≤ Aut (Γ), so Cayley graphs are always vertex-transitive

Why important: in combinatorics, statistical designs, computation

Circulant graphs: used in experimental layouts for statistical ex-
periments, and for many constructions in combinatorics

Expander graphs: almost all regular graphs are expanders, but
“explicit constructions very difficult”; Ramanujan graphs are Cayley
graphs (Lubotzky-Phillips-Sarnak 1988)

Random selection in group computation: modelled and analysed
as random walks on Cayley graphs
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Arthur Cayley 1821-1895

‘As for everything else, so for a mathematical theory:
beauty can be perceived but not explained.’

1849 admitted to the bar; 14 years as lawyer
1863 Sadleirian Professor (Pure Maths) Cambridge
Published 900 mathematical papers and notes
Matrices led to Quantum mechanics (Heisenburg)
Also geometry, group theory
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Still to come!

∗ Recognition problem
∗ Primitive Cayley graphs
∗ B-groups
∗ Burnside, Schur and Wielandt
∗ Exact group factorisations
∗ Use of finite simple groups
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A recognition problem

Higman Sims graph Γ = Γ(HS): 100 vertices, valency 22, A :=
Aut (Γ) = HS.2 Related to Steiner system S(3,6,22); Aα = M22.2.

22
2122 1 6

77

16

Points Blocks

Lead to discovery of: HS by D. G. Higman and C. C. Sims in 1967

Not obvious: Γ(HS) = Cay(G,S) for G = (Z5 × Z5) : [4]
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Recognising Cayley graphs

Aut (Γ): may be much larger than GR for Γ = Cay(G,S)

Some constructions: may hide the fact that Γ is a Cayley graph.

Question: How to decide if a given (vertex-transitive) graph Γ is a

Cayley graph?

Characterisation: Γ is a Cayley graph ⇐⇒ ∃ R ≤ Aut (Γ), with R

regular on vertices.

In this case: Γ ∼= Cay(R,S) for some S.
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Not all vertex-trans graphs are Cayley, but . . .

Petersen graph P is vertex-transitive and non-Cayley:
Check criterion: Aut (Γ) = S5. All involutions (elements of order
2) fix a vertex.

Any regular subgroup
would have order
10 (even) so
would contain
involution fixing a vertex
contradiction
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Answer: first determine Aut (Γ); then search for R.

Both difficult problems in general!

Do we really care?: Cayley graphs seem ‘common’ among vertex-

transitive graphs.

e.g. There are 15,506 vertex-transitive graphs with 24 vertices

Of these, 15,394 are Cayley graphs (Gordon Royle, 1987)

McKay-Praeger Conjecture: (empirically based) As n→∞

Number of Cayley graphs on ≤ n vertices

Number of vertex-transitive graphs on ≤ n vertices
→ 1
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Various proposals regarding

vertex-transitive/Cayley graph question

‘Non-Cayley Project’: For some n, all vertex-transitive graphs on
n vertices are Cayley. Determine all such n. (Dragan Marušic)

Study ‘normal Cayley graphs’: that is, GR / Aut (Cay(G,S))
(Ming Yao Xu)

Study ‘primitive Cayley graphs’: that is, Aut (Cay(G,S)) vertex-
primitive (only invariant vertex-partitions are trivial);
Note each H < G: gives GR-invariant vertex-partition into H-cosets;
for each H need extra autos not preserving the H-coset partition.

We will follow the last one in this lecture.
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Primitive Cayley graphs

Given: Γ = Cay(G,S), when is Aut (Γ) vertex primitive?

Generic example: If S = G\{1} then Γ = Cay(G,S) is the complete

graph Kn, where n = |G| and Aut (Γ) = Sym (G) ∼= Sn

(and hence primitive)

Higman-Sims graph HS: is a primitive Cayley graph
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William Burnside 1852-1927

1897: published The Theory of Groups of Finite Order, first treatise

on group theory in English.

‘Burnside 1911’: If G = Zpm, p prime and m ≥ 2, then the only

primitive Cay(G,S) is complete graph Kpm.
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‘Burnside 1911’: If G = Zpm, p prime and m ≥ 2, then the only

primitive Cay(G,S) is complete graph Kpm.

Burnside’s real result was

Burnside 1911: If G = Zpm, p prime and m ≥ 2, then the only

primitive groups H such that GR < H ≤ Spm are 2-transitive.

[2-transitive means all ordered point-pairs equivalent under the group]
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Work inspired by Burnside’s result

Schur 1933: G = Zn, n not prime, then the only primitive Cay(G,S)
is complete graph Kn.

Issai Schur 1875-1941

Led to: Schur’s theory of S-rings (Wielandt School); coherant con-
figurations (D. G. Higman), and centraliser algebras and Hecke alge-
bras.
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Burnside 1921: had tried to prove same result for G abelian but

not elementary abelian; error pointed out by Dorothy Manning 1936

Wielandt 1935: G abelian, n = |G| not prime, at least one cyclic

Sylow subgroup ⇒ only primitive Cay(G,S) is complete graph Kn.

Wielandt 1950: Same result holds if G dihedral group (first infinite

family of non-abelian such groups)

Wielandt 1955: Call a group G of order n a B-group if

Cay(G,S) primitive ⇒ Cay(G,S) = Kn

Thus: Many abelian groups, certainly most cyclic groups and all

dihedral groups are B-groups
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Helmut Wielandt 1910-2001

1964: published influential book
Finite Permutation Groups

‘It is to one of Schur’s seminars that I owe the stimulus to work with

permutation groups, my first research area. At that time the theory

had nearly died out. . . . so completely superseded by the more gener-

ally applicable theory of abstract groups that by 1930 even important

results were practically forgotten - to my mind unjustly.’
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Back to Wielandt’s theory of B-groups:

When proposed 1960’s, 1970’s: focus on the potential B-group;
much interest in 2-transitive groups

Other work by Bercov, W. R. Scott, Enomote, Kanazawa in 1960’s

Recent work: uses classification of the finite simple groups (FSGC)
(e.g. all finite 2-transitive groups now known)

Focuses on pair (G,H): G < H ≤ Aut (Γ) ≤ Sym (Ω) with
G regular, H primitive, Γ = Cay(G,S)

Aim to understand: primitive groups H; primitive Cayley graphs
Γ, other applications (e.g. constructing semisimple Hopf algebras)
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A group-theoretic factorisation problem

Wielandt condition: G < H ≤ Aut (Γ) ≤ Sym (Ω) with

G regular, H primitive, and Γ = Cay(G,S)

Equivalent to: for α ∈ Ω, K := Gα (stabiliser)

H = GK and G ∩K = 1 (an exact factorisation of H)

With: K maximal subgroup of H

Problem: Find all exact factorisations H = GK with K maximal

Problem not new, but new methods available to attack it.
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An example

G. A. Miller 1935: for H = An (alternating group) gave examples
of exact factorisations H = GK, and gave examples of n for which
the only exact factorisations have K = An−1

George Abram Miller 1863-1951

Wiegold & Williamson 1980: classified all exact factorisations
H = GK with H ∼= An or Sn
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A fascinating density result

Cameron, Neumann, Teague 1982: for ‘almost all n’, the only
primitive groups on Ω = {1, . . . , n} are An and Sn = Sym (Ω).

Technically: If N(x) := Number of n ≤ x where ∃ G < H 6= An, Sn
with G regular, H primitive, then N(x)

x → 1 as x→∞

Immediate consequence: for ‘almost all n’, every group G of order
n is a B-group (we want those groups G that are not B groups)
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Types of primitive groups H

Results of Liebeck, Praeger, Saxl 2000: G < H 6= An, Sn with G

regular, H primitive ⇒ one of
(1) H diagonal, or twisted wreath, or affine type

[here there always exists regular subgroup G]
(2) H almost simple (T ≤ H ≤ Aut (T ), T simple)
(3) H product action

Comments: (2) (resolved by LPS, 2007+) and (3) (still open);
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G < H 6= An, Sn with G regular, H primitive

G. A. Jones 2002: found all H with G cyclic

Cai Heng Li, 2003, 2007: found all H with G abelian or dihedral

Li & Seress, 2005: found all H if n squarefree and G ⊆ Soc(H).

Giudici, 2007: found all H,G if H sporadic almost simple

Baumeister, 2006, 2007: found all H,G, with H sporadic, or ex-

ceptional Lie type, or unitary or O+
8 (q)

Major open case: H almost simple classical group

(the heart of the problem)
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G < H < Sym (Ω), H classical, G regular

Principal tool: LPS 1990 classification of ‘maximal factorisations’

H = AK of almost simple groups H, both A and K maximal

Implies: All (H,A,K) known such that (possibly) G ≤ A <max H

Then comes: a lot of hard work

Example: Hering’s Theorem gives list of possible A,G for one class

of maximal subgroups K in one class of classical groups H (1-space

stabilisers in linear groups); we check list. Find examples G ≤ ΓL(1, qd)

(metacyclic)
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LPS 2007+ approach

Series of theorems: for each type of classical group (PSL, PSp,

PSU, PΩε), classifying possibilities for transitive subgroups on various

kinds of subspaces

Basic strategy: Must consider all possible ordered triples (H,A,K)

where there exists maximal factorisation H = AK.

Seek G ≤ A such that H = GK and G ∩K = 1.

Factorisation ‘propagates’: A = (A ∩K)G and (A ∩K) ∩G = 1

(smaller exact factorisation)
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LPS 2007+ Results

Main Theorem: Complete lists of all primitive actions
of almost simple classical groups H, and lists of subgroups G such
that G is regular

What does it teach us?: tight explicit restrictions on regular sub-
groups G of almost simple primitive groups H 6= An, Sn

1: |Ω| > 3× 29! ∼ 2.65× 1031 ⇒ G one of
metacyclic, |G| = (qd − 1)/(q − 1)

or subgroup of AΓL(1, q), |G| = q(q − 1)/2 odd
or Ap−1, Sp−1, Ap−2 × Z2 for prime p ≡ 1 (mod 4),

or Ap2−2 for prime p ≡ 3 (mod 4)

where q is a prime power, and p is prime [Compare with CNT result]

29



Almost simple groups as B-groups

Complete information about almost simple groups G: when they are

B-groups, and if not, what primitive groups contain them as regular

subgroups.

2: Suppose G is almost simple. Then G is a B-group ⇐⇒
G not simple, and G 6= Sp−2 (p prime), PSL(2,16).4, PSL(3,4).2

3: Suppose G is simple or one of Sp−2, PSL(2,16).4, PSL(3,4).2

If G < H < Sym (Ω) with H primitive, G regular, then either

G×G ≤ H ≤ Hol(G).2 with G simple, or H in explicit short list.
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What does it teach us about primitive Cayley

graphs?

Case of G simple: two types of primitive Cayley graphs Γ = Cay(G,S)

(1) S = G \ {1} Aut (Γ) = Sym (G)
(2) S = union of G-conjugacy classes Aut (Γ) ≥ G×G

LPS: G simple and Γ = Cay(G,S) vertex-primitive ⇒
(1) or (2) or G = Ap2−2 for prime p ≡ 3 (mod 4)

In last case there are examples for each p
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What else did we notice: coincidences

Seven: primitive groups of degree 120 share a common regular sub-

group (namely S5). Lattice of containments among these groups

shown below.

Sp8(2)
↗ ↖

Sp4(4).2 O+
8 (2)

↗ ↖
A9 Sp6(2)

↗ ↗
S7 S8
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Classified: all instances where G contained in more than one almost

simple primitive group



Some remaining open problems

1: Get a better understanding of which primitive product action
groups contain regular subgroups

In particular: Are there product action examples not arising from
an almost simple example?

2: Determine (non) B-groups among wider class of groups

3: Study the primitive Cayley graphs that arise.

4: Determine the kinds of regular subgroups that may exist in affine
primitive groups, apart from the translation subgroup. (Some exist,
Hegedüs 2000)
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