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Permutation groups

Permutation : of set €2, bijection g : 2 — 2
Symmetric group of all permutations of €2
group Sym (€2): under composition, for example
g = (1,2) followed by h = (2,3) yields gh = (1,3,2)
g=(1,2,3) has inverse ¢~ 1 = (3,2,1) = (1,3,2)
Permutation G < Sym (£2), that is, subset
group on €2: closed under inverses and products (compositions)
Example: G =1((00,1,2,3,4)) < Sym(2) on 2 =1{0,1,2,3,4}



Interesting permutation groups occur in:

Graph Theory: Automorphism groups (edge-preserving perm’s)
Geometry: Collineations (line-preserving permutations)
Number Theory and Cryptography: Galois groups, elliptic curves

Differential equations: Measure symmetry - affects nature of so-
lutions

Many applications: basic measure of symmetry



Regular permutation groups

Permutation group:
G transitive:

G regular:

Example:
Alternative view:

G <Sym (2)

all points of 2 equivalent

under elements of GG

‘smallest possible transitive’ that is

only the identity element of G fixes a point
G=1((00,1,2,3,4)) on 2 ={0,1,2,3,4}

G =Zs on 2 ={0,1,2,3,4} by addition
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View of regular permutation groups

Take any: group G, set Q2 =G
Define action: pg:z —xg for ge G,x € Q2 (pg is bijection)

Form permutation group: Gpg = {pglg € G} <Sym (£2)
Gr = G and Gp is regular



Visualise regular permutation groups as graphs

Given generating set S: G = (S) with s € S <= sles
Define graph: vertex set 2 = @G, edges {g,sg} for g€ G,s € S

Example: G =1Zs, S={1,4}, obtain ' = Cxy, Aut(l"') = Dqp.
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These are the Cayley graphs I = Cay(G, S)

Always: Gpg < Aut (M), so Cayley graphs are always vertex-transitive
Why important: in combinatorics, statistical designs, computation

Circulant graphs: used in experimental layouts for statistical ex-
periments, and for many constructions in combinatorics

Expander graphs: almost all regular graphs are expanders, but
“explicit constructions very difficult” ; Ramanujan graphs are Cayley
graphs (Lubotzky-Phillips-Sarnak 1988)

Random selection in group computation: modelled and analysed
as random walks on Cayley graphs



Arthur Cayley 1821-1895

‘As for everything else, so for a mathematical theory:
beauty can be perceived but not explained.’

1849 admitted to the bar; 14 years as lawyer

1863 Sadleirian Professor (Pure Maths) Cambridge
Published 900 mathematical papers and notes
Matrices led to Quantum mechanics (Heisenburg)
Also geometry, group theory



* * * % * %

Still to come!

Recognition problem
Primitive Cayley graphs
B-groups

Burnside, Schur and Wielandt
Exact group factorisations
Use of finite simple groups



A recognition problem

Higman Sims graph I = '(HS): 100 vertices, valency 22, A =
Aut (I"') = HS.2 Related to Steiner system S(3,6,22); Aq = M»>5.2.

Points Blocks

LLead to discovery of: HS by D. G. Higman and C. C. Sims in 1967

Not obvious: T (HS) = Cay(G,S) for G = (Zs x Zs) : [4]
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Recognising Cayley graphs

Aut (I"):  may be much larger than Gg for ' = Cay(G, S)
Some constructions: may hide the fact that I is a Cayley graph.

Question: How to decide if a given (vertex-transitive) graph I is a
Cayley graph?

Characterisation: 1[I is a Cayley graph <= 3 R < Aut(l), with R
regular on vertices.

In this case: [ = Cay(R,S) for some S.
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Not all vertex-trans graphs are Cayley, but ...

Petersen graph P is vertex-transitive and non-Cayley:
Check criterion: Aut(l') = Ss. All involutions (elements of order
2) fix a vertex.

Any regular subgroup
would have order

10 (even) so

would contain

involution fixing a vertex
contradiction
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Answer: first determine Aut (I"); then search for R.
Both difficult problems in general!

Do we really care?: Cayley graphs seem ‘common’ among vertex-
transitive graphs.

e.g. There are 15,506 vertex-transitive graphs with 24 vertices
Of these, 15,394 are Cayley graphs (Gordon Royle, 1987)

McKay-Praeger Conjecture: (empirically based) As n — oo

Number of Cayley graphs on < n vertices
Number of vertex-transitive graphs on < n vertices

— 1
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Various proposals regarding
vertex-transitive/Cayley graph question

‘Non-Cayley Project’: For some n, all vertex-transitive graphs on
n vertices are Cayley. Determine all such n. (Dragan Marusic)

Study ‘normal Cayley graphs’: thatis, G <« Aut(Cay(G,S))
(Ming Yao Xu)

Study ‘primitive Cayley graphs’: that is, Aut(Cay(G,S)) vertex-
primitive (only invariant vertex-partitions are trivial);

Note each H < G: (gives Gpr-invariant vertex-partition into H-cosets;
for each H need extra autos not preserving the H-coset partition.

We will follow the last one in this lecture.
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Primitive Cayley graphs

Given: [ = Cay(G,S), when is Aut (IM) vertex primitive?
Generic example: If S =G\{1} then " = Cay(G, S) is the complete
graph K, where n = |G| and Aut (") =Sym (G) = S,

(and hence primitive)

Higman-Sims graph HS: is a primitive Cayley graph
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William Burnside 1852-1927

1897: published The Theory of Groups of Finite Order, first treatise
on group theory in English.

‘Burnside 1911’: If G = Zpm, p prime and m > 2, then the only
primitive Cay(G, S) is complete graph Kpm.
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‘Burnside 1911": If G = Z;m, p prime and m > 2, then the only
primitive Cay(G, S) is complete graph K,m.

Burnside's real result was

Burnside 1911: If G = Zym, p prime and m > 2, then the only
primitive groups H such that Gr < H < 5pm are 2-transitive.

[2-transitive means all ordered point-pairs equivalent under the group]
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Work inspired by Burnside’s result

Schur 1933: G = Z,, n not prime, then the only primitive Cay(G, S)
iIs complete graph K.

Issai Schur 1875-1941

Led to: Schur’s theory of S-rings (Wielandt School); coherant con-
figurations (D. G. Higman), and centraliser algebras and Hecke alge-
bras.
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Burnside 1921: had tried to prove same result for G abelian but
not elementary abelian; error pointed out by Dorothy Manning 1936

Wielandt 1935: G abelian, n = |G| not prime, at least one cyclic
Sylow subgroup = only primitive Cay(G, S) is complete graph Kj,.

Wielandt 1950: Same result holds if G dihedral group (first infinite
family of non-abelian such groups)

Wielandt 1955: Call a group G of order n a B-group if
Cay(@G, S) primitive =  Cay(G,S) = K,

Thus: Many abelian groups, certainly most cyclic groups and all

dihedral groups are B-groups
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Helmut Wielandt 1910-2001

1964: published influential book
Finite Permutation Groups

‘It is to one of Schur’s seminars that I owe the stimulus to work with
permutation groups, my first research area. At that time the theory
had nearly died out. ...so completely superseded by the more gener-
ally applicable theory of abstract groups that by 1930 even important
results were practically forgotten - to my mind unjustly.’
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Back to Wielandt’s theory of B-groups:

When proposed 1960's, 1970’s: focus on the potential B-group;
much interest in 2-transitive groups

Other work by Bercov, W. R. Scott, Enomote, Kanazawa in 1960’s

Recent work: uses classification of the finite simple groups (FSGC)
(e.g. all finite 2-transitive groups now known)

Focuses on pair (G,H): G < H <Aut(lN) <sym () with
G regular, H primitive, ' = Cay(G, S)

Aim to understand: primitive groups H; primitive Cayley graphs
", other applications (e.g. constructing semisimple Hopf algebras)
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A group-theoretic factorisation problem

Wielandt condition: G < H < Aut(lN) <Sym () with
G regular, H primitive, and I' = Cay(G, S)

Equivalent to: for a € Q, K := G (stabiliser)

H=GK and GNK =1 (an exact factorisation of H)
With: K maximal subgroup of H

Problem: Find all exact factorisations H = GK with K maximal

Problem not new, but new methods available to attack it.
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An example

G. A. Miller 1935: for H = A,, (alternating group) gave examples
of exact factorisations H = GK, and gave examples of n for which
the only exact factorisations have K = A,,_1

George Abram Miiller 1863-1951

Wiegold & Williamson 1980: classified all exact factorisations
H = GK with H = A,, or Sy,
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A fascinating density result

Cameron, Neumann, Teague 1982: for ‘almost all n’, the only
primitive groups on 2 ={1,...,n} are A, and S, = Sym (f2).

Technically: If N(xz) := Number of n < x where 3 G < H # Ap, Sy
with G regular, H primitive, then &) 1 a5 ¢ — oo

1L

Immediate consequence: for ‘almost all n’, every group GG of order
n IS a B-group (we want those groups G that are not B groups)
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Types of primitive groups H

Results of Liebeck, Praeger, Saxl 2000: G < H # A, S, with G
regular, H primitive = one of
(1) H diagonal, or twisted wreath, or affine type
[here there always exists regular subgroup GJ
(2) H almost simple (T'< H < Aut(T), T simple)
(3) H product action

Comments: (2) (resolved by LPS, 2007+) and (3) (still open);
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G < H #+# Ap,Sn, With G regular, H primitive

G. A. Jones 2002: found all H with G cyclic

Cai Heng Li, 2003, 2007: found all H with G abelian or dihedral
Li & Seress, 2005: found all H if n squarefree and G C Soc(H).
Giudici, 2007: found all H,G if H sporadic almost simple
Baumeister, 2006, 2007: found all H,G, with H sporadic, or ex-
ceptional Lie type, or unitary or Oé"(q)

Major open case: H almost simple classical group
(the heart of the problem)
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G < H<Sym(2), H classical, GG regular

Principal tool: LPS 1990 classification of ‘maximal factorisations’
H = AK of almost simple groups H, both A and K maximal

Implies: All (H, A, K) known such that (possibly) G < A <max H
Then comes: a lot of hard work

Example: Hering's Theorem gives list of possible A, G for one class
of maximal subgroups K in one class of classical groups H (1l-space
stabilisers in linear groups); we check list. Find examples G < I‘L(l,qd)
(metacyclic)
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LPS 2007+ approach

Series of theorems: for each type of classical group (PSL, PSp,
PSU, PQ¥¢), classifying possibilities for transitive subgroups on various
kinds of subspaces

Basic strategy: Must consider all possible ordered triples (H, A, K)
where there exists maximal factorisation H = AK.
Seek G < A such that H =GK and GN K = 1.

Factorisation ‘propagates’: A= (ANK)G and (AnNK)NG =1
(smaller exact factorisation)
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LPS 20074+ Results

Main Theorem: Complete lists of all primitive actions
of almost simple classical groups H, and lists of subgroups G such

that &G is regular

What does it teach us?: tight explicit restrictions on regular sub-
groups G of almost simple primitive groups H #*= Ay, Sn

1: |2 >3x29!1~265x 1031 = G one of
metacyclic, |G| = (¢¢ —1)/(q — 1)
or subgroup of AlL(1l,q), |G| =q(q—1)/2 odd
or A,_1,Sp—1,Ap_2 x Zp for prime p=1 (mod 4),
or Ap2_2 for prime p =3 (mod 4)
where ¢ is a prime power, and p is prime [Compare with CNT result]
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Almost simple groups as B-groups

Complete information about almost simple groups G: when they are
B-groups, and if not, what primitive groups contain them as regular
subgroups.

2: Suppose G is almost simple. Then G is a B-group <—
G not simple, and G # S,_> (p prime), PSL(2,16).4, PSL(3,4).2

3: Suppose G is simple or one of S, >, PSL(2,16).4, PSL(3,4).2
If G < H<Sym(2) with H primitive, G regular, then either
G x G < H < Hol(G@).2 with G simple, or H in explicit short list.
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What does it teach us about primitive Cayley

graphs?

Case of G simple: two types of primitive Cayley graphs I = Cay(G, S)

(1) S=G\{1} Aut (M) = Sym (G)
(2) S = union of G-conjugacy classes Aut(lN') > G x G

LPS: G simple and I = Cay(G, S) vertex-primitive =
(1) or (2) or G = Ap2_2 for prime p =3 (mod 4)

In last case there are examples for each p
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What else did we notice: coincidences

Seven: primitive groups of degree 120 share a common regular sub-
group (namely Sg). Lattice of containments among these groups
shown below.

Sps(2)
/ AN
Spa(4).2 Od (2)
/ AN
Ag Spe(2)
/ /
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Classified: all instances where (G contained in more than one almost
simple primitive group



Some remaining open problems

1: Get a better understanding of which primitive product action
groups contain regular subgroups

In particular: Are there product action examples not arising from
an almost simple example?

2: Determine (non) B-groups among wider class of groups
3: Study the primitive Cayley graphs that arise.
4: Determine the kinds of regular subgroups that may exist in affine

primitive groups, apart from the translation subgroup. (Some exist,
Hegediis 2000)
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